The tensile properties of a series of soybean protein yarns are tested in USTER THINKPAID Ⅲ. A nonlinear viscoelastic model has been proposed to describe the tensile behavior of soybean protein yarns. The model is co...The tensile properties of a series of soybean protein yarns are tested in USTER THINKPAID Ⅲ. A nonlinear viscoelastic model has been proposed to describe the tensile behavior of soybean protein yarns. The model is composed of a Maxwell element, a linear spring and a nonlinear spring. The tensile properties of soybean protein yam are analyzed. The stress-strain curves of the yams are fitted. The average breaking tenacity and specific work of rupture are calculated using the average breaking strain. Comparisons indicate that theoretical predictions conform the experimental results very well.展开更多
The effect of strain rate on tensile properties of cotton yarns is analyzed using the standard linear solid model. The tensile curve, breaking strength and work of rupture of the yarns under different strain rate are ...The effect of strain rate on tensile properties of cotton yarns is analyzed using the standard linear solid model. The tensile curve, breaking strength and work of rupture of the yarns under different strain rate are calculated. A good correlation exists between the experiment results and theoretical anticipations.展开更多
In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material caus...In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.展开更多
文摘The tensile properties of a series of soybean protein yarns are tested in USTER THINKPAID Ⅲ. A nonlinear viscoelastic model has been proposed to describe the tensile behavior of soybean protein yarns. The model is composed of a Maxwell element, a linear spring and a nonlinear spring. The tensile properties of soybean protein yam are analyzed. The stress-strain curves of the yams are fitted. The average breaking tenacity and specific work of rupture are calculated using the average breaking strain. Comparisons indicate that theoretical predictions conform the experimental results very well.
文摘The effect of strain rate on tensile properties of cotton yarns is analyzed using the standard linear solid model. The tensile curve, breaking strength and work of rupture of the yarns under different strain rate are calculated. A good correlation exists between the experiment results and theoretical anticipations.
文摘In this paper, a dynamic fault model is proposed to predict yarn end breakage in the spinning procedure through investigation of fault characteristics. In view of the principle that uniformity bad in raw material causes iustable yarn formation, the investigation focuses on the fault characteristic existing in the dynamic tension. Analyzing the dynamic spinning system, the phenomenon of over random shock in a spinning triangle is discovered to be the main physical event prior to yarn end breakage. The fault characteristic is further confirmed by dynamic tests and signal processing, and can be used to make an approach to predicting yarn end breakage. A relative energy feature is defined for evaluating the tendency of yarn end breakage, and its effectiveness is verified by on.line monitoring tests in the laboratory. The research results show that the proposed dynamic fault model has not only an advantage in indicating the presence of fault characteristics, but also great potentials in quantitating fault in online spinning monitoring.