The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating i...The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.展开更多
Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied fr...Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites.展开更多
In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPB...In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.展开更多
Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of th...Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.展开更多
Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in...Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.展开更多
A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demons...A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.展开更多
Ceramics in general and particularly alumina (Al2O3) are important materials in various industries, but the main problem with these materials is related to some of their mechanical properties including low resistanc...Ceramics in general and particularly alumina (Al2O3) are important materials in various industries, but the main problem with these materials is related to some of their mechanical properties including low resistance against mechanical shock (hardness-toughness), which makes them to be so brittle, and possession of high degree of porosity which reduces their strength and gives them fragile characteristics. Researchers report indicates that the presence of the second phase with suitable properties can improve some of the mechanical properties of these materials and optimize their characteristic. Carbon nanotubes with unique physical characteristics such as large aspect ratio, high strength and Young's modulus and improved thermal properties could be suitable candidates for this purpose. In this study, the growth of multi wall carbon nanotubes (MWCNTs) on the alumina support as the matrix of the composite has been carried out, using catalytic chemical vapor deposition (CCVD) method in which the iron nanoparticles has been selected as catalyst materials. Ethylene gas is used as feed materials for carbon source and argon as the carrier gas. In order to achieve a more comprehensive results, we have investigated the effects of some fabricating parameters like catalyst particle size, its weight percentage related to support material, alumina and to the some synthesizing temperature gases flow rate. Fabricated ceramics composites samples structures were analyzed using SEM images as well as Raman scattering spectra and X-ray diffraction pattern.展开更多
The large refractive index difference between Si and SiO2 makes it possible to realize ultrasmall photonic integrated circuits. A 5×5 ultracompact arrayed waveguide grating multiplexer based on 500×250 nm Si...The large refractive index difference between Si and SiO2 makes it possible to realize ultrasmall photonic integrated circuits. A 5×5 ultracompact arrayed waveguide grating multiplexer based on 500×250 nm Si nanowire waveguides is designed and fabricated by using the technologies of E-beam writing and amorphous-Si deposition. The mea- sured channel spacing is about 1.5 nm (close to the design value) and the channel crosstalk is about –8 dB.展开更多
A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of s...A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of surface active agent,and then the Ba2Ti2O(O2)2(ta)2·2H2O precursor was obtained by reaction between Ti2O(O2)2(ta)24-and Ba2+. Finally,the precursor was annealed at 800 ℃ for 2 h to obtain BaTiO3 powder. The morphology,the particle size distribution,the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM,XRD,IR,Raman and chemical analysis,respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.展开更多
Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for...Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.展开更多
Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sinter...Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sintering temperature of 1500 °C and time of 10 min exhibited optimum mechanical properties at room temperature in terms of fracture toughness and transverse rupture strength.MoSi_2 based composite with 6.0% CNTs(volume fraction) had the highest fracture toughness,transverse rupture strength and hardness,which were improved by about 25.7%,51.5% and 24.4% respectively,as compared with pure MoSi_2.A Mo_(4.8)Si_3C_(0.6) phase was detected in CNTs/MoSi_2 composites by both X-ray diffraction(XRD) method and microstructure analysis with scanning electron microscopy(SEM).It is believed that the fine grains and well dispersed small Mo_(4.8)Si_3C_(0.6) particles had led to a higher hardness and strength of CNTs/MoSi_2 composites because of their particle pullout,crack deflection and micro-bridging effects.展开更多
The mechanical and strain sensing properties of carbon nanotube composite yarns (CNTs/PDMS) with different weight percent of PDMS were studied. The CNT/PDMS composite yarn was prepared by infiltration method. Pictur...The mechanical and strain sensing properties of carbon nanotube composite yarns (CNTs/PDMS) with different weight percent of PDMS were studied. The CNT/PDMS composite yarn was prepared by infiltration method. Pictures of diameter of CNT composite yarns were obtained though polarized light microscope. Resistance change values of CNT composites under stretching were obtained though the single fiber strength tester and digital multimeter and related mechanical, electrical software. The changes of mechanical properties. electrical properties and sensing pertbrmance of pure and composite CNT yarns were discussed and analyzed. The results showed that the strength of CNT yarn declined after it was composited with PDMS polymer. In addition, the conductivity and sensing performance of CNT yarns improved significantly. The most suitable CNT composite yam occurs at PDMS mass fraction of 1% when strength and sensing properties were all considered.展开更多
Magnetic anisotropic nanocomposites have attracted tremendous interests, due to their unexpected properties originating from the interactions of the interfaces except for the intrinsic features. In this work, we devel...Magnetic anisotropic nanocomposites have attracted tremendous interests, due to their unexpected properties originating from the interactions of the interfaces except for the intrinsic features. In this work, we develop a facile solution chemistry synthesis method to prepare the one-dimensional(1 D) Co-Fe3O4 heterostructures with hard magnetic property. Interestingly, the Fe precursor firstly decompose and nucleate individually, and then grow on the surface of the hexagonal closed-packed(hcp) Co nanorods(NRs) upon prolonging heating time at higher temperature, which is different from the general seed-mediated growth model. The distribution density of Fe3O4 nanoparticles(NPs) on the surface of the Co NRs can be varied with the addition of Fe source,modulating the values of coercivity and saturation magnetization for the Co-Fe3O4 heterostructures. The as-synthesized Co-Fe3O4 heterostructures maintain the hard magnetic properties with a coercivity value more than 2.5 kOe as well as a saturation magnetization value up to 128.3 emu g-1, indicating the preservation of the anisotropy of the hcp Co NRs.展开更多
The development of ultrasmall transition-metal dichalcogenide(such as MoS_2,MoSe_2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. ...The development of ultrasmall transition-metal dichalcogenide(such as MoS_2,MoSe_2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. Here,we report an in-situ tearing strategy to produce the carbon nanotube supported subnanometer ternary MoSeS(denoted as CNTs@NiSe@MoSeS) for efficient hydrogen evolution. Large(18.3 ± 1.1nm in length) multilayer MoS_2 sheets grown on Ni(OH)_2 thin film are torn into subnanometer(5.2 ± 0.7 nm in length) MoSeS via a subsequent selenization progress,along with the transformation of Ni(OH)_2 thin film into small Ni Se nanoplates. The resulting nanocomposite exhibits abundant active edge sites,outstanding 10,000-cycle stability and ultrahigh activity with a low overpotential of 189 mV at a high current density of 200 mA cm^(-2) toward hydrogen evolution.展开更多
文摘The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.
文摘Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites.
基金Supported by China National Petroleum Corporation Innovation Foundation(No.J02060)and Subsidized by Special Funds for Major State Basic Research Projects(No.G1999064800)
文摘In this paper, poly(butylene-terephthalate)-layered silicate of clay nanocomposites (NPBT) are reported. Their thermal properties, heat distortion temperature (HDT) and crystallization nucleation are investigated. NPBT samples have apparent viscosity over 0.85, HDT of 30℃ to 50℃ higher than that of poly (butylene-terephthalate) (PBT) for clay load from 1.0% to 10.0% (by mass), and higher capability to accommodate clay than other polymers. The nonisothermal crystallization experiments indicate that the better thermal degradation behavior and crystallization rate of NPBT are 50% higher than PBT, and its injection mould processing temperature is lowered from 110℃ to 55℃. NPBT samples are characterized by several techniques. X-ray shows an original clay interlayer distance enlarged from 1.0 nm to 2.5 nm, while both TBM and AFM indicate an average size from 30nm to lOOnm of exfoliated clay layers, and 3%(by mass) of particle agglomeration being phase separated from PBT matrix, which are factors on some mechanical properties decrease of NPBT. The disappearance of spherulitic morphology in NPBT resulted from layers nucleation is detected. Improving NPBT properties by treating clay with long chain organic reagent and controlling the way to load it is suggested.
文摘Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.
基金Supported by Program for New Century Excellent Talents in University(NCET-07-0738)
文摘Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.
基金Project(50721003)supported by the Creative Research Group of National Natural Science Foundation of ChinaProject(50825102)supported by the National Science Fund for Distinguished Young Scholars,China
文摘A simple electrochemical method for the in situ preparation of homogeneously dispersed gold-polyaniline core/shell nanocomposite particles with controlled size on the highly oriented pyrolytic graphite(HOPG)was demonstrated.The HOPG surface was modified preferentially by covalent bonding of a two-dimensional 4-aminophenyl monolayer employing diazonium chemistry.AuCl4 -ions were attached to the Ar-NH2 termination and reduced electrochemically.This results in the formation of Au nuclei that could be further grown into gold nanoparticles.The formation of polyaniline as the shell wrap of Au nanoparticle was established by localized electro-polymerization.These core-shell nanocomposites prepared were characterized by AFM and cyclic voltammetry.The results show that the gold-polyaniline core-shell composites on HOPG have a mean particle size of 100 nm in diameter and the polyaniline shell thickness is about 15 nm.
文摘Ceramics in general and particularly alumina (Al2O3) are important materials in various industries, but the main problem with these materials is related to some of their mechanical properties including low resistance against mechanical shock (hardness-toughness), which makes them to be so brittle, and possession of high degree of porosity which reduces their strength and gives them fragile characteristics. Researchers report indicates that the presence of the second phase with suitable properties can improve some of the mechanical properties of these materials and optimize their characteristic. Carbon nanotubes with unique physical characteristics such as large aspect ratio, high strength and Young's modulus and improved thermal properties could be suitable candidates for this purpose. In this study, the growth of multi wall carbon nanotubes (MWCNTs) on the alumina support as the matrix of the composite has been carried out, using catalytic chemical vapor deposition (CCVD) method in which the iron nanoparticles has been selected as catalyst materials. Ethylene gas is used as feed materials for carbon source and argon as the carrier gas. In order to achieve a more comprehensive results, we have investigated the effects of some fabricating parameters like catalyst particle size, its weight percentage related to support material, alumina and to the some synthesizing temperature gases flow rate. Fabricated ceramics composites samples structures were analyzed using SEM images as well as Raman scattering spectra and X-ray diffraction pattern.
文摘The large refractive index difference between Si and SiO2 makes it possible to realize ultrasmall photonic integrated circuits. A 5×5 ultracompact arrayed waveguide grating multiplexer based on 500×250 nm Si nanowire waveguides is designed and fabricated by using the technologies of E-beam writing and amorphous-Si deposition. The mea- sured channel spacing is about 1.5 nm (close to the design value) and the channel crosstalk is about –8 dB.
基金Project(06JJ50150) supported by the Hunan Provincial Natural Science Foundation of China
文摘A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of surface active agent,and then the Ba2Ti2O(O2)2(ta)2·2H2O precursor was obtained by reaction between Ti2O(O2)2(ta)24-and Ba2+. Finally,the precursor was annealed at 800 ℃ for 2 h to obtain BaTiO3 powder. The morphology,the particle size distribution,the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM,XRD,IR,Raman and chemical analysis,respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.
文摘Cu/TEA-doped TiO2 nanoparticles were prepared by the sol-gel process. Titanium (IV) isoproxide, copper (II) nitrate trihydrate and triethanolamine were used as precursors and calcined at a temperature of 400℃ for 2 h with a heating rate of 10℃/min to produce powders. Different interstitial amounts of TEA were added in the range of 0 mol% to 15 mol% of TiO2. The X-ray diffractrometer patterns show the TiO2 nanocomposites have a high anatase phase. It was also apparent that doped TEA has an effect on the crystallite size of TiO2 composite nanoparticles. The morphology of the composite powders was characterized by scanning electron microscope. The photocatalytic activity of Cu/TEA-doped TiO2 nanoparticles was evaluated through the degradation of methylene blue under UV irradiation. The results showed that 1 mol% TEA of TiO2 nanocomposites exhibited high photocatalytic activity and a small crystallite size.
基金Project(51371155)supported by the National Natural Science Foundation of ChinaProject(2014H0046)supported by the Key Science and Technology Project of Fujian Province,China+2 种基金Project(3502Z20143036)supported by the Scientific Research Fund of Xiamen,ChinaProject(JB13149)supported by the Education Department Science and Technology Project of Fujian Province,ChinaProject(2012D131)supported by the Natural Science Foundation Guidance Project of Fujian Province,China
文摘Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sintering temperature of 1500 °C and time of 10 min exhibited optimum mechanical properties at room temperature in terms of fracture toughness and transverse rupture strength.MoSi_2 based composite with 6.0% CNTs(volume fraction) had the highest fracture toughness,transverse rupture strength and hardness,which were improved by about 25.7%,51.5% and 24.4% respectively,as compared with pure MoSi_2.A Mo_(4.8)Si_3C_(0.6) phase was detected in CNTs/MoSi_2 composites by both X-ray diffraction(XRD) method and microstructure analysis with scanning electron microscopy(SEM).It is believed that the fine grains and well dispersed small Mo_(4.8)Si_3C_(0.6) particles had led to a higher hardness and strength of CNTs/MoSi_2 composites because of their particle pullout,crack deflection and micro-bridging effects.
文摘The mechanical and strain sensing properties of carbon nanotube composite yarns (CNTs/PDMS) with different weight percent of PDMS were studied. The CNT/PDMS composite yarn was prepared by infiltration method. Pictures of diameter of CNT composite yarns were obtained though polarized light microscope. Resistance change values of CNT composites under stretching were obtained though the single fiber strength tester and digital multimeter and related mechanical, electrical software. The changes of mechanical properties. electrical properties and sensing pertbrmance of pure and composite CNT yarns were discussed and analyzed. The results showed that the strength of CNT yarn declined after it was composited with PDMS polymer. In addition, the conductivity and sensing performance of CNT yarns improved significantly. The most suitable CNT composite yam occurs at PDMS mass fraction of 1% when strength and sensing properties were all considered.
基金National Natural Science Foundation of China(20801050,21001098,21103154,51172219)Zhejiang Province Science Foundation(Z4090462)Innovation Team Foundation of Science and Technology Department of Zhejiang Province(2010R50016)
基金financially supported by the National Key R&D Program of China(2017YFA0206301 and2016YFA0200102)the National Natural Science Foundation of China(51631001,51590882,51672010 and 81421004)Beijing Natural Science Foundation(L172008)
文摘Magnetic anisotropic nanocomposites have attracted tremendous interests, due to their unexpected properties originating from the interactions of the interfaces except for the intrinsic features. In this work, we develop a facile solution chemistry synthesis method to prepare the one-dimensional(1 D) Co-Fe3O4 heterostructures with hard magnetic property. Interestingly, the Fe precursor firstly decompose and nucleate individually, and then grow on the surface of the hexagonal closed-packed(hcp) Co nanorods(NRs) upon prolonging heating time at higher temperature, which is different from the general seed-mediated growth model. The distribution density of Fe3O4 nanoparticles(NPs) on the surface of the Co NRs can be varied with the addition of Fe source,modulating the values of coercivity and saturation magnetization for the Co-Fe3O4 heterostructures. The as-synthesized Co-Fe3O4 heterostructures maintain the hard magnetic properties with a coercivity value more than 2.5 kOe as well as a saturation magnetization value up to 128.3 emu g-1, indicating the preservation of the anisotropy of the hcp Co NRs.
基金supported in part by the National Natural Science Foundation of China (21475007 and 21675009)the Fundamental Research Funds for the Central Universities (buctrc201608 and buctrc201720)the support from the “Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology”
文摘The development of ultrasmall transition-metal dichalcogenide(such as MoS_2,MoSe_2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. Here,we report an in-situ tearing strategy to produce the carbon nanotube supported subnanometer ternary MoSeS(denoted as CNTs@NiSe@MoSeS) for efficient hydrogen evolution. Large(18.3 ± 1.1nm in length) multilayer MoS_2 sheets grown on Ni(OH)_2 thin film are torn into subnanometer(5.2 ± 0.7 nm in length) MoSeS via a subsequent selenization progress,along with the transformation of Ni(OH)_2 thin film into small Ni Se nanoplates. The resulting nanocomposite exhibits abundant active edge sites,outstanding 10,000-cycle stability and ultrahigh activity with a low overpotential of 189 mV at a high current density of 200 mA cm^(-2) toward hydrogen evolution.