A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programmi...A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained, which is useful for the correct application of the above methods.展开更多
Based on the compressive sensing,a novel algorithm is proposed to solve reconstruction problem under sparsity assumptions.Instead of estimating the reconstructed data through minimizing the objective function,the auth...Based on the compressive sensing,a novel algorithm is proposed to solve reconstruction problem under sparsity assumptions.Instead of estimating the reconstructed data through minimizing the objective function,the authors parameterize the problem as a linear combination of few elementary thresholding functions,which can be solved by calculating the linear weighting coefficients.It is to update the thresholding functions during the process of iteration.The advantage of this method is that the optimization problem only needs to be solved by calculating linear coefficients for each time.With the elementary thresholding functions satisfying certain constraints,a global convergence of the iterative algorithm is guaranteed.The synthetic and the field data results prove the effectiveness of the proposed algorithm.展开更多
文摘A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained, which is useful for the correct application of the above methods.
文摘Based on the compressive sensing,a novel algorithm is proposed to solve reconstruction problem under sparsity assumptions.Instead of estimating the reconstructed data through minimizing the objective function,the authors parameterize the problem as a linear combination of few elementary thresholding functions,which can be solved by calculating the linear weighting coefficients.It is to update the thresholding functions during the process of iteration.The advantage of this method is that the optimization problem only needs to be solved by calculating linear coefficients for each time.With the elementary thresholding functions satisfying certain constraints,a global convergence of the iterative algorithm is guaranteed.The synthetic and the field data results prove the effectiveness of the proposed algorithm.