期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种非对称互联型粒子群算法 被引量:2
1
作者 方峻 唐普英 任诚 《计算机工程与应用》 CSCD 北大核心 2006年第32期48-50,71,共4页
提出了一种非对称互联型粒子群算法(AFIPSO),它是对互联型粒子群算法的改进。此算法重新构造了加权函数,体现了粒子之间的非对称影响。随后对六种加权函数及其4种交叉组合进行了测试。试验结果表明:组合加权函数对算法的收敛速度和稳定... 提出了一种非对称互联型粒子群算法(AFIPSO),它是对互联型粒子群算法的改进。此算法重新构造了加权函数,体现了粒子之间的非对称影响。随后对六种加权函数及其4种交叉组合进行了测试。试验结果表明:组合加权函数对算法的收敛速度和稳定性均有非常好的改善,在收敛率上几近完美。 展开更多
关键词 非对称影响 互联型粒子群算法 组合加权函数
下载PDF
Parameter estimation methods in generalized weighted functional mean combining forecasting model
2
作者 万玉成 盛昭瀚 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期117-121,共5页
A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programmi... A kind of combining forecasting model based on the generalized weighted functional mean is proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained, which is useful for the correct application of the above methods. 展开更多
关键词 Forecasting Quadratic programming
下载PDF
Seismic data reconstruction based on iterative linear expansion of thresholds 被引量:2
3
作者 LUO Teng LIU Cai +4 位作者 WANG dian YANG Xueting FU Wei ZHOU Yin HE Mei 《Global Geology》 2015年第2期127-133,共7页
Based on the compressive sensing,a novel algorithm is proposed to solve reconstruction problem under sparsity assumptions.Instead of estimating the reconstructed data through minimizing the objective function,the auth... Based on the compressive sensing,a novel algorithm is proposed to solve reconstruction problem under sparsity assumptions.Instead of estimating the reconstructed data through minimizing the objective function,the authors parameterize the problem as a linear combination of few elementary thresholding functions,which can be solved by calculating the linear weighting coefficients.It is to update the thresholding functions during the process of iteration.The advantage of this method is that the optimization problem only needs to be solved by calculating linear coefficients for each time.With the elementary thresholding functions satisfying certain constraints,a global convergence of the iterative algorithm is guaranteed.The synthetic and the field data results prove the effectiveness of the proposed algorithm. 展开更多
关键词 compressive sensing SPARSITY seismic data reconstruction THRESHOLDING weighting coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部