背景:生物3D打印技术已经广泛应用于生物医学的多个领域,但其成功转化为临床试验的案例并不多,且在精准医学领域仍处于发展阶段。该技术在实现个体化医疗、改变现有的治疗流程、帮助制药和医疗公司研发出更精准的药物方面展现出巨大的潜...背景:生物3D打印技术已经广泛应用于生物医学的多个领域,但其成功转化为临床试验的案例并不多,且在精准医学领域仍处于发展阶段。该技术在实现个体化医疗、改变现有的治疗流程、帮助制药和医疗公司研发出更精准的药物方面展现出巨大的潜力,并有望实现从个体化信息采集和诊断到个性化医疗产品制备和精准治疗方案的闭环。目的:分析生物3D打印技术在精准医学领域研究现状及热点。方法:检索2015年1月至2020年8月Web of Science数据库核心合集和万方数据库中有关3D打印技术在精准医学领域的文献。利用大数据分析工具、数学统计、计算机语义分析、可视化软件以及数据库分析检索功能对检索结果进行科学计量分析。结果与结论:①3D打印技术在精准医学领域的研究在2015至2020年的发文量逐年增加;②美国的发文量最多,且其与其他国家的合作也处于核心地位;中国在此领域的研究也较活跃;③近5年全球发表论文最多的研究机构是美国加州大学体系,而中国科学院和上海交通大学是在国际和国内发文量最多的中国科研机构;④《Biofabrication》和《中国组织工程研究》则是国际和国内发文量最多的期刊;⑤全球范围生物3D打印技术在精准医学中的研究热点主要包括生物墨水、微流控、矫形外科、组织/器官再生、药物研发等;国内中文期刊发表的研究成果主要集中在骨科、组织工程、临床教学、医学模型等领域;⑥生物3D打印作为最具有革命性和影响力的先进工具之一,在再生医学及器官移植方面取得了一定成果,在组织工程、干细胞、癌症等领域也成为了优秀的科研工具,并且以数字化手段打造出一条从医学成像、术前规划到植入物设计和制造的精准医学通路。展开更多
Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification a...Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D) printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms) and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors) for regenerated tissues and organs.展开更多
Vigna unguiculata L. Walp is a recalcitrant plant in terms of in vitro cell, tissue and organ differentiation, which makes it difficult to apply tissue-culture dependant approaches for obtaining stable genetic transfo...Vigna unguiculata L. Walp is a recalcitrant plant in terms of in vitro cell, tissue and organ differentiation, which makes it difficult to apply tissue-culture dependant approaches for obtaining stable genetic transformation in cowpea. Despite this, sporadic efforts have been made to develop regeneration systems in cowpea during the past 40 years. This review presents the considerable progress on cowpea regeneration (organogenesis and embryogenesis) and especially focuses on the regeneration mode of organogenesis, including highlights of the effect of genotypes, explants, medium and plant hormones used in tissue culture. The existing problems and the future research directions were also discussed.展开更多
文摘背景:生物3D打印技术已经广泛应用于生物医学的多个领域,但其成功转化为临床试验的案例并不多,且在精准医学领域仍处于发展阶段。该技术在实现个体化医疗、改变现有的治疗流程、帮助制药和医疗公司研发出更精准的药物方面展现出巨大的潜力,并有望实现从个体化信息采集和诊断到个性化医疗产品制备和精准治疗方案的闭环。目的:分析生物3D打印技术在精准医学领域研究现状及热点。方法:检索2015年1月至2020年8月Web of Science数据库核心合集和万方数据库中有关3D打印技术在精准医学领域的文献。利用大数据分析工具、数学统计、计算机语义分析、可视化软件以及数据库分析检索功能对检索结果进行科学计量分析。结果与结论:①3D打印技术在精准医学领域的研究在2015至2020年的发文量逐年增加;②美国的发文量最多,且其与其他国家的合作也处于核心地位;中国在此领域的研究也较活跃;③近5年全球发表论文最多的研究机构是美国加州大学体系,而中国科学院和上海交通大学是在国际和国内发文量最多的中国科研机构;④《Biofabrication》和《中国组织工程研究》则是国际和国内发文量最多的期刊;⑤全球范围生物3D打印技术在精准医学中的研究热点主要包括生物墨水、微流控、矫形外科、组织/器官再生、药物研发等;国内中文期刊发表的研究成果主要集中在骨科、组织工程、临床教学、医学模型等领域;⑥生物3D打印作为最具有革命性和影响力的先进工具之一,在再生医学及器官移植方面取得了一定成果,在组织工程、干细胞、癌症等领域也成为了优秀的科研工具,并且以数字化手段打造出一条从医学成像、术前规划到植入物设计和制造的精准医学通路。
文摘Medical models, or "phantoms," have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D) printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms) and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors) for regenerated tissues and organs.
文摘Vigna unguiculata L. Walp is a recalcitrant plant in terms of in vitro cell, tissue and organ differentiation, which makes it difficult to apply tissue-culture dependant approaches for obtaining stable genetic transformation in cowpea. Despite this, sporadic efforts have been made to develop regeneration systems in cowpea during the past 40 years. This review presents the considerable progress on cowpea regeneration (organogenesis and embryogenesis) and especially focuses on the regeneration mode of organogenesis, including highlights of the effect of genotypes, explants, medium and plant hormones used in tissue culture. The existing problems and the future research directions were also discussed.