期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RBF-BLS面向电动汽车低碳安全出行的SOH估计方法
1
作者 李春喜 乔涵哲 +3 位作者 姚刚 姜淏予 崔向科 葛泉波 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第9期1454-1464,共11页
电动汽车充电过程的安全性与动力电池组的健康状态(SOH)紧密相关,因此SOH的高性能实时估计是充电过程中安全检测的重要基础.由于动力电池组的SOH受复杂结构、电芯类型、驾驶习惯、环境温度和充电行为等因素的深度影响,现有基于单个或少... 电动汽车充电过程的安全性与动力电池组的健康状态(SOH)紧密相关,因此SOH的高性能实时估计是充电过程中安全检测的重要基础.由于动力电池组的SOH受复杂结构、电芯类型、驾驶习惯、环境温度和充电行为等因素的深度影响,现有基于单个或少量特定电池电芯实验数据的方法研究在面对整车动力电池组实时SOH估计时遭遇模型复杂、数据缺失、实时性差、精度不足等难题.针对建模困难、实时性和精度不足等问题,应用多方法集成融合思想,在电池经验退化模型上引入径向基函数(RBF)优化的宽度学习(BLS)神经网络,提出一种高性能的动力电池组SOH估计方法.首先,该方法采用经验退化模型和离线历史充电数据得到初步的SOH值;其次,应用RBF神经网络给出一种BLS系统中初始权重矩阵的确定方法,建立经验退化与径向基函数优化的宽度学习神经网络(RBF-BLS);再次,采用RBF-BLS神经网络和实时充电数据训练得到估计误差,并对经验退化模型得到的SOH进行补偿,从而得到更高精度的SOH估计值;最后,采用基于充电运营企业实际充电数据的计算机仿真实例来验证新方法的有效性和优越性. 展开更多
关键词 充电安全 健康状态 经验退化模型 宽度学习
下载PDF
基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法 被引量:21
2
作者 王萍 张吉昂 程泽 《电网技术》 EI CSCD 北大核心 2022年第2期613-621,共9页
对锂离子电池的健康状态(state of health,SOH)进行准确估计是电池安全稳定运行的重要保障。为此,提出一种基于最小二乘支持向量机误差补偿模型(least squares support vector machine-error compensation model,LSSVM-ECM)的锂离子电池... 对锂离子电池的健康状态(state of health,SOH)进行准确估计是电池安全稳定运行的重要保障。为此,提出一种基于最小二乘支持向量机误差补偿模型(least squares support vector machine-error compensation model,LSSVM-ECM)的锂离子电池SOH估计方法。该方法将电池容量的衰退过程分为总体趋势和局部差异,对于容量衰退的总体趋势,由电池容量历史衰退数据建立经验退化模型(empirical degradation model,EDM),并计算SOH真实值和模型输出值之间的误差;对于容量衰退的局部差异,以等压升时间作为输入,经验模型的拟合误差作为输出,建立LSSVM误差补偿模型,对EDM的预测结果进行动态补偿。公开数据集和实际实验测试的验证结果表明,所提方法具有较高的预测精度和较强的鲁棒性。 展开更多
关键词 锂离子电池 健康状态 经验退化模型 最小二乘支持向量机
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部