In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fi...In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fixed skewness and fixed kurtosis by means of Monte Carlo simulation. This comparison has been made when the ratio of variance is two as well as with equal and different sample sizes for large sample volumes. The sample used in the study is: (25, 25), (25, 50), (25, 75), (25, 100), (50, 25), (50, 50), (50, 75), (50, 100), (75, 25), (75, 50), (75, 75), (75, 100), (100, 25), (100, 50), (100, 75), and (100, 100). According to the results of the study, it has been observed that the statistical power of both tests decreases when the coefficient of kurtosis is held fixed and the coefficient of skewness is reduced while it increases when the coefficient of skewness is held fixed and the coefficient of kurtosis is reduced. When the ratio of skewness is reduced in the case of fixed kurtosis, the WW test is stronger in sample volumes (25, 25), (25, 50), (25, 75), (25, 100), (50, 75), and (50, 100) while KS-2 test is stronger in other sample volumes. When the ratio of kurtosis is reduced in the case of fixed skewness, the statistical power of WW test is stronger in volume samples (25, 25), (25, 75), (25, 100), and (75, 25) while KS-2 test is stronger in other sample volumes.展开更多
In statistical theory, a statistic that is function of sample observations is used to estimate distribution parameter. This statistic is called unbiased estimate if its expectation is equal to theoretical parameter. P...In statistical theory, a statistic that is function of sample observations is used to estimate distribution parameter. This statistic is called unbiased estimate if its expectation is equal to theoretical parameter. Proving whether or not a statistic is unbiased estimate is very important but this proof may require a lot of efforts when statistic is complicated function. Therefore, this research facilitates this proof by proposing a theorem which states that the expectation of variable x 〉 0 is u if and only if the limit of logarithm expectation of x approaches logarithm of u. In order to make clear of this theorem, the research gives an example of proving correlation coefficient as unbiased estimate by taking advantages of this theorem.展开更多
Abstract In this paper, we investigate the effective condition numbers for the generalized Sylvester equation (AX - YB, DX - YE) = (C,F), where A,D ∈ Rm×m B,E ∈ Rn×n and C,F ∈ Rm×n. We apply the ...Abstract In this paper, we investigate the effective condition numbers for the generalized Sylvester equation (AX - YB, DX - YE) = (C,F), where A,D ∈ Rm×m B,E ∈ Rn×n and C,F ∈ Rm×n. We apply the small sample statistical method for the fast condition estimation of the generalized Sylvester equation, which requires (9(m2n + mn2) flops, comparing with (-O(m3 + n3) flops for the generalized Schur and generalized Hessenberg- Schur methods for solving the generalized Sylvester equation. Numerical examples illustrate the sharpness of our perturbation bounds.展开更多
文摘In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fixed skewness and fixed kurtosis by means of Monte Carlo simulation. This comparison has been made when the ratio of variance is two as well as with equal and different sample sizes for large sample volumes. The sample used in the study is: (25, 25), (25, 50), (25, 75), (25, 100), (50, 25), (50, 50), (50, 75), (50, 100), (75, 25), (75, 50), (75, 75), (75, 100), (100, 25), (100, 50), (100, 75), and (100, 100). According to the results of the study, it has been observed that the statistical power of both tests decreases when the coefficient of kurtosis is held fixed and the coefficient of skewness is reduced while it increases when the coefficient of skewness is held fixed and the coefficient of kurtosis is reduced. When the ratio of skewness is reduced in the case of fixed kurtosis, the WW test is stronger in sample volumes (25, 25), (25, 50), (25, 75), (25, 100), (50, 75), and (50, 100) while KS-2 test is stronger in other sample volumes. When the ratio of kurtosis is reduced in the case of fixed skewness, the statistical power of WW test is stronger in volume samples (25, 25), (25, 75), (25, 100), and (75, 25) while KS-2 test is stronger in other sample volumes.
文摘In statistical theory, a statistic that is function of sample observations is used to estimate distribution parameter. This statistic is called unbiased estimate if its expectation is equal to theoretical parameter. Proving whether or not a statistic is unbiased estimate is very important but this proof may require a lot of efforts when statistic is complicated function. Therefore, this research facilitates this proof by proposing a theorem which states that the expectation of variable x 〉 0 is u if and only if the limit of logarithm expectation of x approaches logarithm of u. In order to make clear of this theorem, the research gives an example of proving correlation coefficient as unbiased estimate by taking advantages of this theorem.
基金supported by National Natural Science Foundation of China(Grant Nos.11001045,10926107 and 11271084)Specialized Research Fund for the Doctoral Program of Higher Education of MOE(Grant No. 20090043120008)+4 种基金Training Fund of NENU’S Scientific Innovation Project of Northeast Normal University(Grant No. NENU-STC08009)Program for Changjiang Scholars and Innovative Research Team in Universitythe Programme for Cultivating Innovative Students in Key Disciplines of Fudan University(973 Program Project)(Grant No. 2010CB327900)Doctoral Program of the Ministry of Education(Grant No.20090071110003)Shanghai Science & Technology Committee and Shanghai Education Committee(Dawn Project)
文摘Abstract In this paper, we investigate the effective condition numbers for the generalized Sylvester equation (AX - YB, DX - YE) = (C,F), where A,D ∈ Rm×m B,E ∈ Rn×n and C,F ∈ Rm×n. We apply the small sample statistical method for the fast condition estimation of the generalized Sylvester equation, which requires (9(m2n + mn2) flops, comparing with (-O(m3 + n3) flops for the generalized Schur and generalized Hessenberg- Schur methods for solving the generalized Sylvester equation. Numerical examples illustrate the sharpness of our perturbation bounds.