期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于编解码器模型的车道识别与车辆检测算法 被引量:1
1
作者 谢岩 刘广聪 《广东工业大学学报》 CAS 2019年第4期36-41,共6页
针对无人驾驶车辆环境感知问题,通过编码器提取共享图像特征,再通过解码器来实现语义分割、分类和目标检测模块,并应用在车道识别和车辆检测上.在无人驾驶中,任务的实时性非常关键,这种共享编码器模型能一定程度上提高任务实时性.实验... 针对无人驾驶车辆环境感知问题,通过编码器提取共享图像特征,再通过解码器来实现语义分割、分类和目标检测模块,并应用在车道识别和车辆检测上.在无人驾驶中,任务的实时性非常关键,这种共享编码器模型能一定程度上提高任务实时性.实验结果表明,该模型的语义分割在KITTI数据集上的平均精度达到93.89%,比最优性能提升0.53%,联合检测速度达到25.43Hz. 展开更多
关键词 无人驾驶 编解码器模型 语义分割 目标检测 带孔卷积
下载PDF
一种编解码器模型的锂离子电池健康状态估算 被引量:14
2
作者 刘昊天 王萍 程泽 《中国电机工程学报》 EI CSCD 北大核心 2021年第5期1851-1859,共9页
随着锂离子电池应用领域的愈加广泛,实时、准确的评估其健康状态(state of health,SOH)成为确保电池安全可靠运行的重要要求。该文提出一种基于注意力机制解码器模型的锂离子电池SOH估算方法,该算法结合与GRU的特点,将数据编码成一组包... 随着锂离子电池应用领域的愈加广泛,实时、准确的评估其健康状态(state of health,SOH)成为确保电池安全可靠运行的重要要求。该文提出一种基于注意力机制解码器模型的锂离子电池SOH估算方法,该算法结合与GRU的特点,将数据编码成一组包含内在特征的序列,并由注意力帮助解码器完成最终的解算。该算法无需建立电池模型,也不需要过多的先验知识,仅通过单个采样周期的电压、电流采样值即可获得较高精度的SOH估计值。为适应更多应用场景,该文设计定长片段放电数据、定长片段充电数据及变长片段充电数据等3种输入模式,验证实验中,3种估算模式的平均绝对误差均小于1%,表明该估算方法具有估算周期短、估算精度高及适应性强等特性。 展开更多
关键词 锂离子电池 健康状态 深度学习 编解码器模型 注意力机制
原文传递
功率谱密度引导下的时间序列预测模型
3
作者 梁立河 崔锦莹 +3 位作者 张雪松 高妮玲 赵涓涓 强彦 《计算机工程与设计》 北大核心 2025年第4期1087-1095,共9页
为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序... 为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序列的长短期特征、实现未来“先验”信息的有效传递和降低异常数据对序列预测的负面影响,提高模型的预测准确性。在3个数据集上进行的实验验证了PSDformer模型的可行性和有效性。 展开更多
关键词 时间序列预测 功率谱密度 编解码器模型 多粒度能量选择 注意力知识引导 序列去噪分解 长短期特征 “先验”信息
下载PDF
基于多粒度时间注意力RNN的航班客座率预测 被引量:8
4
作者 邓玉婧 武志昊 林友芳 《计算机工程》 CAS CSCD 北大核心 2020年第1期294-301,共8页
准确预测航班客座率有利于处理航班机票超售、座位虚耗等问题,然而传统时间序列预测方法只关注航班近期每日客座率的变化特点,无法同时考虑其他因素的影响,预测效果不够理想。针对该问题,提出一种基于多粒度时间注意力机制的循环神经网... 准确预测航班客座率有利于处理航班机票超售、座位虚耗等问题,然而传统时间序列预测方法只关注航班近期每日客座率的变化特点,无法同时考虑其他因素的影响,预测效果不够理想。针对该问题,提出一种基于多粒度时间注意力机制的循环神经网络模型MTA-RNN。通过构建多级注意力机制获取航班客座率在不同时间粒度下的时序相关性,同时考虑航班自身属性及节假日等其他因素,得到未来一段时间内的目标航班客座率。在真实历史航班客座率数据集上的实验结果表明,MTA-RNN模型的预测准确率高于ARIMA模型、LSTM模型和Seq2seq模型。 展开更多
关键词 航班客座率预测 时间序列预测 循环神经网络 注意力机制 编解码器模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部