In order to enhance the quality of vertical handoff in an overlay wireless network, multiple attributes are taken into account when optimizing the vertical handoff decision including user-based and network-based QoS f...In order to enhance the quality of vertical handoff in an overlay wireless network, multiple attributes are taken into account when optimizing the vertical handoff decision including user-based and network-based QoS factors. In this paper, we develop a novel vertical handoff algorithm in an integrated 3G cellular and Wireless LAN networks. The proposed algorithm can adjust the weight of each QoS attribute dynamically as the networks change, trace the network condition and choose the optimal access point at transient regions. Simulation results show that this algorithm is able to provide accurate handoff decision, resulting in small unnecessary handoff numbers, good performance of throughput and handoff delay in heterogeneous environments.展开更多
The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service co...The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service composition,if properly handled.Therefore,the impacts of node mobility on the dynamic network based service composition are investigated.Then,a movement-assisted optimization method,namely MASCO,is proposed to improve the performance of the composited services by minimizing the length of data stream and the hop-counts of the service routes in the underlying networks.The correctness and efficiency of the proposed method are then verified through theoretical analysis and computer simulations.展开更多
Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors...Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors, considering exploration cost, target detection value, exploration ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy interference, the authors design a method to maintain the connectivity of sensor network, under the conditions of effective detection of the targets. Simulation result shows that the proposed deployment strategy can achieve the dynamic optimization deployment under complex conditions.展开更多
Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and can...Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.展开更多
基金Acknowledgements This work is supported by Key Program of National Natural Science Foundation of China Grant No. 60832009.
文摘In order to enhance the quality of vertical handoff in an overlay wireless network, multiple attributes are taken into account when optimizing the vertical handoff decision including user-based and network-based QoS factors. In this paper, we develop a novel vertical handoff algorithm in an integrated 3G cellular and Wireless LAN networks. The proposed algorithm can adjust the weight of each QoS attribute dynamically as the networks change, trace the network condition and choose the optimal access point at transient regions. Simulation results show that this algorithm is able to provide accurate handoff decision, resulting in small unnecessary handoff numbers, good performance of throughput and handoff delay in heterogeneous environments.
基金Supported by the National Natural Science Foundation of China(No.61070182,60873192)
文摘The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service composition,if properly handled.Therefore,the impacts of node mobility on the dynamic network based service composition are investigated.Then,a movement-assisted optimization method,namely MASCO,is proposed to improve the performance of the composited services by minimizing the length of data stream and the hop-counts of the service routes in the underlying networks.The correctness and efficiency of the proposed method are then verified through theoretical analysis and computer simulations.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208+1 种基金the Changjiang Scholars Programthe Beijing Outstanding Ph.D. Program Mentor under Grant No.20131000704
文摘Sensor network deployment is the key for sensors to play an important performance. Based on game theory, first, the authors propose a multi-type sensor target allocation method for the autonomous deployment of sensors, considering exploration cost, target detection value, exploration ability and other factors. Then, aiming at the unfavorable environment, e.g., obstacles and enemy interference, the authors design a method to maintain the connectivity of sensor network, under the conditions of effective detection of the targets. Simulation result shows that the proposed deployment strategy can achieve the dynamic optimization deployment under complex conditions.
基金the National Natural Science Foundations of China(Grant Nos.12102035 and 12125201)the China Postdoctoral Science Foundation(Grant No.2020TQ0042)the Beijing Natural Science Foundation(Grant No.L212008).
文摘Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait.