针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出一种基于信息熵调整的自适应混沌蚁群聚类改进算法。该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整信息素更新策略。每一次迭代结束时,使用混沌搜...针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出一种基于信息熵调整的自适应混沌蚁群聚类改进算法。该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整信息素更新策略。每一次迭代结束时,使用混沌搜索算子在当前全局最优解附近搜索更好的解。而随着算法的进行,混沌算子搜索范围逐渐缩小,这样混沌算子在蚁群搜索的初期起到防止陷入局部最优的作用,在蚁群搜索后期起到提高搜索精度的作用,从而得到更好的聚类结果。使用KDD Cup 1999入侵检测数据集所作的仿真实验结果表明,聚类效果改进明显,并能有效提高入侵检测的检测率、降低误检率。展开更多
Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weight...Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.展开更多
A personalized trust management scheme is proposed to help peers build up trust between each other in open and flat P2P communities. This scheme totally abandons the attempt to achieve a global view. It evaluates trus...A personalized trust management scheme is proposed to help peers build up trust between each other in open and flat P2P communities. This scheme totally abandons the attempt to achieve a global view. It evaluates trust from a subjective point of view and gives personalized decision support to each peer. Simulation experiments prove its three advantages: free of central control, stronger immunity to misleading recommendations, and limited traffic overload.展开更多
This paper briefly reviews other people’s works on negative selection algorithm and their shortcomings. With a view to the real problem to be solved, authors bring forward two assumptions, based on which a new immune...This paper briefly reviews other people’s works on negative selection algorithm and their shortcomings. With a view to the real problem to be solved, authors bring forward two assumptions, based on which a new immune algorithm, multi-level negative selection algorithm, is developed. In essence, compared with Forrest’s negative selection algorithm, it enhances detector generation efficiency. This algorithm integrates clonal selection process into negative selection process for the first time. After careful analyses, this algorithm was applied to network intrusion detection and achieved good results.展开更多
文摘针对蚁群聚类算法在聚类结果中出现部分数据划分不够准确的问题,提出一种基于信息熵调整的自适应混沌蚁群聚类改进算法。该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整信息素更新策略。每一次迭代结束时,使用混沌搜索算子在当前全局最优解附近搜索更好的解。而随着算法的进行,混沌算子搜索范围逐渐缩小,这样混沌算子在蚁群搜索的初期起到防止陷入局部最优的作用,在蚁群搜索后期起到提高搜索精度的作用,从而得到更好的聚类结果。使用KDD Cup 1999入侵检测数据集所作的仿真实验结果表明,聚类效果改进明显,并能有效提高入侵检测的检测率、降低误检率。
文摘Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.
基金Supported by the National High-Tech Research and Development Plan of China (863) (No.2003AA142160)
文摘A personalized trust management scheme is proposed to help peers build up trust between each other in open and flat P2P communities. This scheme totally abandons the attempt to achieve a global view. It evaluates trust from a subjective point of view and gives personalized decision support to each peer. Simulation experiments prove its three advantages: free of central control, stronger immunity to misleading recommendations, and limited traffic overload.
基金Project (No. 60073034) supported by the National Natural Sci-ence Foundation of China
文摘This paper briefly reviews other people’s works on negative selection algorithm and their shortcomings. With a view to the real problem to be solved, authors bring forward two assumptions, based on which a new immune algorithm, multi-level negative selection algorithm, is developed. In essence, compared with Forrest’s negative selection algorithm, it enhances detector generation efficiency. This algorithm integrates clonal selection process into negative selection process for the first time. After careful analyses, this algorithm was applied to network intrusion detection and achieved good results.