Traditional clustering algorithms generally have some problems, such as the sensitivity to initializing parameter, difficulty in finding out the optimization clustering result and the validity of clustering. In this p...Traditional clustering algorithms generally have some problems, such as the sensitivity to initializing parameter, difficulty in finding out the optimization clustering result and the validity of clustering. In this paper, a FSM and a mathematic model of a new-style clustering algorithm based on the swarm intelligence are provided. In this algorithm, the clustering main body moves in a three-dimensional space and has the abilities of memory, communication, analysis, judgment and coordinating information. Experimental results conform that this algorithm has many merits such as insensitive to the order of the data, capable of dealing with exceptional, high-dimension or complicated data. The algorithm can be used in the fields of Web mining, incremental clustering. economic analysis, oattern recognition, document classification and so on.展开更多
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities...Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes.展开更多
Assessing machine's performance through comparing the same or similar machines is important to implement intelligent maintenance for swarm machine.In this paper,an outlier mining based abnormal machine detection a...Assessing machine's performance through comparing the same or similar machines is important to implement intelligent maintenance for swarm machine.In this paper,an outlier mining based abnormal machine detection algorithm is proposed for this purpose.Firstly,the outlier mining based on clustering is introduced and the definition of cluster-based global outlier factor(CBGOF) is presented.Then the modified swarm intelligence clustering(MSIC) algorithm is suggested and the outlier mining algorithm based on MSIC is proposed.The algorithm can not only cluster machines according to their performance but also detect possible abnormal machines.Finally,a comparison of mobile soccer robots' performance proves the algorithm is feasible and effective.展开更多
基金Sponsored by the Scientific Research Start-up Foundation of Qingdao University of Science and Technology.
文摘Traditional clustering algorithms generally have some problems, such as the sensitivity to initializing parameter, difficulty in finding out the optimization clustering result and the validity of clustering. In this paper, a FSM and a mathematic model of a new-style clustering algorithm based on the swarm intelligence are provided. In this algorithm, the clustering main body moves in a three-dimensional space and has the abilities of memory, communication, analysis, judgment and coordinating information. Experimental results conform that this algorithm has many merits such as insensitive to the order of the data, capable of dealing with exceptional, high-dimension or complicated data. The algorithm can be used in the fields of Web mining, incremental clustering. economic analysis, oattern recognition, document classification and so on.
文摘Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes.
基金the National Natural Science Foundation of China (No. 50705054)
文摘Assessing machine's performance through comparing the same or similar machines is important to implement intelligent maintenance for swarm machine.In this paper,an outlier mining based abnormal machine detection algorithm is proposed for this purpose.Firstly,the outlier mining based on clustering is introduced and the definition of cluster-based global outlier factor(CBGOF) is presented.Then the modified swarm intelligence clustering(MSIC) algorithm is suggested and the outlier mining algorithm based on MSIC is proposed.The algorithm can not only cluster machines according to their performance but also detect possible abnormal machines.Finally,a comparison of mobile soccer robots' performance proves the algorithm is feasible and effective.