期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于群智数据的情境关联旅游路线推荐 被引量:5
1
作者 郭斌 李智敏 +1 位作者 张靖 於志文 《郑州大学学报(理学版)》 CAS 北大核心 2020年第2期22-28,共7页
针对基于不同出行需求的景区内路线规划问题,首先运用卷积-循环神经网络(CNN-RNN)对游记中图像与文本进行联合嵌入,将数据按照景点进行分类识别,然后使用基于图模型的PhotoRank算法优选出具有多样性、代表性的图片,最后采用关联规则挖... 针对基于不同出行需求的景区内路线规划问题,首先运用卷积-循环神经网络(CNN-RNN)对游记中图像与文本进行联合嵌入,将数据按照景点进行分类识别,然后使用基于图模型的PhotoRank算法优选出具有多样性、代表性的图片,最后采用关联规则挖掘得到针对不同出行人群的特定需求情境的推荐路线。以8个热门景点为例,对马蜂窝中采集的游记数据进行实验,结果表明提出的基于群智数据的跨模态分析和情境关联旅游路线推荐方法能够从多角度真实地刻画景点,并且所推荐的情境关联路线可满足不同人群的特定游玩需求。 展开更多
关键词 群智数据 跨模态分析 PhotoRank算法 旅游路线推荐 情境关联推荐
下载PDF
CrowdDepict:多源群智数据驱动的个性化商品描述生成方法 被引量:2
2
作者 张秋韵 郭斌 +3 位作者 郝少阳 王豪 於志文 景瑶 《计算机科学与探索》 CSCD 北大核心 2020年第10期1670-1680,共11页
随着网上购物逐渐发展,在无法接触到实体商品的情况下,商品描述显得尤为重要。传统人工撰写的商品描述语对所有用户展示相同的商品信息,但没有考虑到不同用户所关注的不同属性,并且人工撰写的效率无法与产品增长速度相匹配,因此如何自... 随着网上购物逐渐发展,在无法接触到实体商品的情况下,商品描述显得尤为重要。传统人工撰写的商品描述语对所有用户展示相同的商品信息,但没有考虑到不同用户所关注的不同属性,并且人工撰写的效率无法与产品增长速度相匹配,因此如何自动生成个性化产品描述成为前沿研究问题。主要研究个性化商品描述内容生成,考虑用户的个性化特征,对每个用户生成对应其兴趣点的商品描述文本。因为个性化商品描述数据集的缺失,提出CrowdDepict方法,通过豆瓣、京东等公开数据源获取商品描述相关语料处理,利用商品评论等数据,生成商品个性化描述。实验结果表明,提出的个性化商品描述模型可根据用户偏好自动生成个性化的商品描述,内容覆盖用户兴趣与产品特点,文本表达流畅。 展开更多
关键词 深度学习 商品描述内容生成 个性化 文本生成 群智数据
下载PDF
移动APP演化策略研究 被引量:3
3
作者 孙悦 郭斌 +2 位作者 欧阳逸 於志文 王柱 《计算机科学与探索》 CSCD 北大核心 2020年第1期40-50,共11页
移动互联网时代中,APP用户更注重产品体验,通过评论的方式来表达自己的使用情况和建议。在线评价数据的研究已经成为热点,从评论中获得的用户反馈有助于APP演化升级,但目前针对APP的评论挖掘方兴未艾。从9家APP应用商店中采集得到大量... 移动互联网时代中,APP用户更注重产品体验,通过评论的方式来表达自己的使用情况和建议。在线评价数据的研究已经成为热点,从评论中获得的用户反馈有助于APP演化升级,但目前针对APP的评论挖掘方兴未艾。从9家APP应用商店中采集得到大量用户评论数据,筛选评论所包含的需求属性和情感倾向,并运用KANO模型对其建模分析,映射属性到魅力、期望、必备等类别。根据APP具体属性和所属KANO类别给出合理有效的更新演化策略:APP演化应优先满足必备和期望属性的需求,并逐步实现魅力属性的需求,并且最终检验了模型的鲁棒性和易移植性。 展开更多
关键词 群智数据 APP用户评论 KANO模型 需求计量 演化策略
下载PDF
A new-style clustering algorithm based on swarm intelligent theory
4
作者 陈卓 刘相双 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期69-73,共5页
Traditional clustering algorithms generally have some problems, such as the sensitivity to initializing parameter, difficulty in finding out the optimization clustering result and the validity of clustering. In this p... Traditional clustering algorithms generally have some problems, such as the sensitivity to initializing parameter, difficulty in finding out the optimization clustering result and the validity of clustering. In this paper, a FSM and a mathematic model of a new-style clustering algorithm based on the swarm intelligence are provided. In this algorithm, the clustering main body moves in a three-dimensional space and has the abilities of memory, communication, analysis, judgment and coordinating information. Experimental results conform that this algorithm has many merits such as insensitive to the order of the data, capable of dealing with exceptional, high-dimension or complicated data. The algorithm can be used in the fields of Web mining, incremental clustering. economic analysis, oattern recognition, document classification and so on. 展开更多
关键词 data mining swarm intelligence CLUSTERING Web mining incremental clustering
下载PDF
Clustering: from Clusters to Knowledge
5
作者 Peter Grabusts 《Computer Technology and Application》 2013年第6期284-290,共7页
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities... Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes. 展开更多
关键词 Data analysis clustering algorithms K-MEANS fuzzy C-means rule extraction.
下载PDF
Outlier Mining Based Abnormal Machine Detection in Intelligent Maintenance 被引量:1
6
作者 张蕾 曹其新 李杰 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第6期695-700,共6页
Assessing machine's performance through comparing the same or similar machines is important to implement intelligent maintenance for swarm machine.In this paper,an outlier mining based abnormal machine detection a... Assessing machine's performance through comparing the same or similar machines is important to implement intelligent maintenance for swarm machine.In this paper,an outlier mining based abnormal machine detection algorithm is proposed for this purpose.Firstly,the outlier mining based on clustering is introduced and the definition of cluster-based global outlier factor(CBGOF) is presented.Then the modified swarm intelligence clustering(MSIC) algorithm is suggested and the outlier mining algorithm based on MSIC is proposed.The algorithm can not only cluster machines according to their performance but also detect possible abnormal machines.Finally,a comparison of mobile soccer robots' performance proves the algorithm is feasible and effective. 展开更多
关键词 intelligent maintenance outlier mining swarm intelligence clustering abnormal machine detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部