在对已发表的 Ga As HBT文献的研究中发现 ,其截止频率 f T 的理论计算结果比实验值小很多 ,而相应的文献中并没有给出 f T的计算结果。针对上述问题 ,文中对产生这种差距的原因进行了分析 ,认为由于速度过冲效应的存在 ,使得电子并非...在对已发表的 Ga As HBT文献的研究中发现 ,其截止频率 f T 的理论计算结果比实验值小很多 ,而相应的文献中并没有给出 f T的计算结果。针对上述问题 ,文中对产生这种差距的原因进行了分析 ,认为由于速度过冲效应的存在 ,使得电子并非以饱和速度 Vsat渡越 BC结耗尽区 ,而是以更高的速度运动。基于上述理论 ,对产生截止频率误差的 BC结耗尽区电子渡越时间τsc进行了修正。利用修正后的公式对文献中的数据进行了重新计算 ,得到了令人满意的结果。展开更多
A Schottky gate resonant tunneling transistor (SGRTT) is fabricated. Relying on simulation by ATLAS software,we find that the gate voltages can be used to control the current of SGRTT when the emitter terminal is gr...A Schottky gate resonant tunneling transistor (SGRTT) is fabricated. Relying on simulation by ATLAS software,we find that the gate voltages can be used to control the current of SGRTT when the emitter terminal is grounded and a positive bias voltage is applied to the collector terminal. When the collector terminal is grounded, the gate voltages can control the peak voltage. As revealed by measurement results, the reason is that the gate voltages and the electric field distribution on emitter and collector terminal change the distribution of the depletion region.展开更多
文摘在对已发表的 Ga As HBT文献的研究中发现 ,其截止频率 f T 的理论计算结果比实验值小很多 ,而相应的文献中并没有给出 f T的计算结果。针对上述问题 ,文中对产生这种差距的原因进行了分析 ,认为由于速度过冲效应的存在 ,使得电子并非以饱和速度 Vsat渡越 BC结耗尽区 ,而是以更高的速度运动。基于上述理论 ,对产生截止频率误差的 BC结耗尽区电子渡越时间τsc进行了修正。利用修正后的公式对文献中的数据进行了重新计算 ,得到了令人满意的结果。
文摘A Schottky gate resonant tunneling transistor (SGRTT) is fabricated. Relying on simulation by ATLAS software,we find that the gate voltages can be used to control the current of SGRTT when the emitter terminal is grounded and a positive bias voltage is applied to the collector terminal. When the collector terminal is grounded, the gate voltages can control the peak voltage. As revealed by measurement results, the reason is that the gate voltages and the electric field distribution on emitter and collector terminal change the distribution of the depletion region.