应用基于B样条基组的相对论耦合簇理论方法,计算了^(212)Fr原子的n S (n=7—12), n P (n=7—12)和n D (n=6—11)态的磁偶极超精细结构常数.与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数,其中7P态的磁偶极超精...应用基于B样条基组的相对论耦合簇理论方法,计算了^(212)Fr原子的n S (n=7—12), n P (n=7—12)和n D (n=6—11)态的磁偶极超精细结构常数.与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数,其中7P态的磁偶极超精细常数的理论值与实验值之间的差异小于1%.在忽略场移效应对Fr原子7P态超精细结构常数的影响下,通过结合实验值进一步定出了^(207-213,220-228)Fr核磁偶极矩μ,这些值与已有的测量值具有非常好的一致性.本文报道了12S, n P (n=9—12)和n D (n=10—11)态的磁偶极超精细结构常数.展开更多
文摘应用基于B样条基组的相对论耦合簇理论方法,计算了^(212)Fr原子的n S (n=7—12), n P (n=7—12)和n D (n=6—11)态的磁偶极超精细结构常数.与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数,其中7P态的磁偶极超精细常数的理论值与实验值之间的差异小于1%.在忽略场移效应对Fr原子7P态超精细结构常数的影响下,通过结合实验值进一步定出了^(207-213,220-228)Fr核磁偶极矩μ,这些值与已有的测量值具有非常好的一致性.本文报道了12S, n P (n=9—12)和n D (n=10—11)态的磁偶极超精细结构常数.