期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于联合注意力机制网络的雾中激光检测
1
作者 吴龙 朱昊伟 +3 位作者 杨旭 徐璐 陈淑玉 张勇 《光电子.激光》 CAS CSCD 北大核心 2024年第11期1155-1165,共11页
自动驾驶汽车和移动机器人均依靠激光雷达等传感器技术的快速发展而进入实际应用过程,但是激光雷达在云雾环境下测距精度和探测范围差,限制了其全天候的应用。本文根据激光在雾中的传播和后向散射模型,建立了雾中目标回波信号的模型,同... 自动驾驶汽车和移动机器人均依靠激光雷达等传感器技术的快速发展而进入实际应用过程,但是激光雷达在云雾环境下测距精度和探测范围差,限制了其全天候的应用。本文根据激光在雾中的传播和后向散射模型,建立了雾中目标回波信号的模型,同时提出了一种基于卷积神经网络(convolutional neural network,CNN)的联合注意力机制网络(combined attention mechanism network,CAMN),用于实现雾中目标回波信号的检测。仿真和实验结果表明,CAMN网络可以有效消除雾气对脉冲激光信号检测的干扰。在30%的散射率下,在10 m范围内检测的绝对误差平均值达到3.13 cm。激光雷达系统探测范围可以达到42 m,是其他方法探测范围的两三倍。该方法能有效提高雾天激光雷达测距精度和探测范围,为激光雷达的实际应用奠定基础。 展开更多
关键词 激光雷达 卷积神经网络(CNN) 光信号处理 雾中检测 联合注意力机制网络(CAMN)
原文传递
基于联合注意力的渐进式遥感图像融合
2
作者 程月馈 刘晓文 《激光与红外》 CAS CSCD 北大核心 2024年第5期824-834,共11页
为发挥遥感图像在国防军事、公共安全、环境监测等领域的重要作用,如何融合已配准的高分辨率全色图像与低分辨率多光谱图像的互补信息成为当前研究的重点。尽管近年来全色锐化方法已取得较大进步,但大多数方法仍受到以下限制:一方面,利... 为发挥遥感图像在国防军事、公共安全、环境监测等领域的重要作用,如何融合已配准的高分辨率全色图像与低分辨率多光谱图像的互补信息成为当前研究的重点。尽管近年来全色锐化方法已取得较大进步,但大多数方法仍受到以下限制:一方面,利用Wald协议退化生成不同尺寸图像时会造成信息损失;另一方面,受到网络结构和单一注意力的限制,无法同时利用全局和局部特征。为解决以上问题,本文提出了基于联合注意力的渐进式网络(Pan-sharpening based on multi-attention progressive network),称为MAPNet。在该网络中,首先采用多阶段训练以减小尺寸变化带来的光谱和细节损失。其次设计联合注意力模块,将自注意力、空间注意力和通道注意力结合,实现对全局特征和局部特征、空间特征和通道特征的多模态分析,进一步提高MAPNet对纹理细节的保留能力。在高分二号卫星上进行大量对比实验和消融实验,定性和定量结果表明,本文方法融合效果优于其他10种方法,能够改善光谱失真和细节纹理丢失等问题。 展开更多
关键词 遥感图像融合 深度学习 联合注意力机制 多光谱图像 全色图像
下载PDF
联合时空注意力的视频显著性预测
3
作者 孙铭会 薛浩 +2 位作者 金玉波 曲卫东 秦贵和 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1767-1776,共10页
为了解决视频显著性预测任务中时间与空间特征联合建模的问题,提出联合时空注意力机制(COStA),共同提取时间和空间维度的注意信息,突出特定时间和区域的特征供模型来感知。基于该机制,进一步提出视频显著性预测模型TASED-COStA,对比实... 为了解决视频显著性预测任务中时间与空间特征联合建模的问题,提出联合时空注意力机制(COStA),共同提取时间和空间维度的注意信息,突出特定时间和区域的特征供模型来感知。基于该机制,进一步提出视频显著性预测模型TASED-COStA,对比实验表明:COStA机制能为神经网络模型在CC、NSS与SIM三个评价指标上获得大于8%的性能提升,TASED-COStA模型能有效地建模视频信息中的时间与空间关系,并给出准确的预测结果。 展开更多
关键词 计算机应用 深度学习 计算机视觉 卷积神经网络 视频显著性预测 联合时空注意力机制
原文传递
基于可微分架构搜索的多载波信号自动调制识别
4
作者 李杰 李靖 +1 位作者 吕璐 宫丰奎 《通信学报》 EI CSCD 北大核心 2024年第9期14-25,共12页
针对城市多径信道下缺乏多载波信号通用数据集,以及传统信号特征与网络模型难以有效识别低信噪比下失真信号调制类型的问题,提出一种基于可微分架构搜索的多载波信号自动调制识别算法。首先,产生了常见OFDM、FBMC与OTFS多载波信号经过... 针对城市多径信道下缺乏多载波信号通用数据集,以及传统信号特征与网络模型难以有效识别低信噪比下失真信号调制类型的问题,提出一种基于可微分架构搜索的多载波信号自动调制识别算法。首先,产生了常见OFDM、FBMC与OTFS多载波信号经过典型城市多径信道的接收信号数据集,选取对调制参数不敏感的信号时频图作为特征向量来训练神经网络;其次,采用可微分架构搜索方法自动搜索最佳网络结构,避免了网络结构设计的反复验证工作;最后,在特征学习过程中引入联合注意力机制,将失真信号特征进行空间转换以降低多径干扰影响,同时计算特征图各通道信息权重并排序,以提升相关特征图通道的分类效果。仿真结果表明,所提算法不仅能提升在城市多径信道环境下尤其是低信噪比时的识别正确率,而且对调制参数变化和小样本场景具有更好的鲁棒性。 展开更多
关键词 可微分架构搜索 多载波信号 自动调制识别 城市多径信道 联合注意力机制
下载PDF
动态视音场景下问答模型研究
5
作者 段毛毛 连培榆 史海涛 《计算机技术与发展》 2024年第3期163-169,共7页
现实世界由大量不同模态内容构建而成,各种模态的信息相互关联和互补,充分挖掘不同模态之间的关系和特性能够有效弥补单一模态信息的局限性。动态视音场景下的问答模型研究,旨在通过视频中多模态信息回答不同视觉物体、声音及其相互联... 现实世界由大量不同模态内容构建而成,各种模态的信息相互关联和互补,充分挖掘不同模态之间的关系和特性能够有效弥补单一模态信息的局限性。动态视音场景下的问答模型研究,旨在通过视频中多模态信息回答不同视觉物体、声音及其相互联系的问题,使人工智能获得场景感知和时空推理能力。针对视音问答不准确的问题,提出了一种空间时序问答模型,该模型通过空间融合建模和时序融合建模对多模态特征进行融合,从而提高问答准确率。首先,分别使用Resnet_18,VGGish和Bi-LST对音频、视频和文字进行特征提取;其次,根据声音和视频的关系,在特征融合时对声音和视频两种模态进行早期的空间融合,并使用联合注意力机制在相互辅助学习后进行特征融合,增强特征互补性;最后,在特征融合后添加注意力机制以增强融合特征与文字的相关性。基于MUSIC-AVQA数据集的实验准确率达73.49%,实现了场景感知和时空推理能力的提升。 展开更多
关键词 视音问答 多模态融合 联合注意力机制 Bi-LSTM MUSIC-AVQA
下载PDF
主题关键词信息融合的中文生成式自动摘要研究 被引量:29
6
作者 侯丽微 胡珀 曹雯琳 《自动化学报》 EI CSCD 北大核心 2019年第3期530-539,共10页
随着大数据和人工智能技术的迅猛发展,传统自动文摘研究正朝着从抽取式摘要到生成式摘要的方向演化,从中达到生成更高质量的自然流畅的文摘的目的.近年来,深度学习技术逐渐被应用于生成式摘要研究中,其中基于注意力机制的序列到序列模... 随着大数据和人工智能技术的迅猛发展,传统自动文摘研究正朝着从抽取式摘要到生成式摘要的方向演化,从中达到生成更高质量的自然流畅的文摘的目的.近年来,深度学习技术逐渐被应用于生成式摘要研究中,其中基于注意力机制的序列到序列模型已成为应用最广泛的模型之一,尤其在句子级摘要生成任务(如新闻标题生成、句子压缩等)中取得了显著的效果.然而,现有基于神经网络的生成式摘要模型绝大多数将注意力均匀分配到文本的所有内容中,而对其中蕴含的重要主题信息并没有细致区分.鉴于此,本文提出了一种新的融入主题关键词信息的多注意力序列到序列模型,通过联合注意力机制将文本中主题下重要的一些关键词语的信息与文本语义信息综合起来实现对摘要的引导生成.在NLPCC 2017的中文单文档摘要评测数据集上的实验结果验证了所提方法的有效性和先进性. 展开更多
关键词 联合注意力机制 序列到序列模型 生成式摘要 主题关键词
下载PDF
结合主题感知与通信代理的文本摘要模型 被引量:2
7
作者 张哲铭 任淑霞 郭凯杰 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第3期97-104,共8页
针对传统自动文本摘要模型受循环神经网络长度限制而无法生成高质量的长文本摘要这一问题,提出了一种结合主题感知与通信代理的文本摘要模型。首先,将编码器划分为相互之间存在通信的多个代理,以解决长短期记忆网络输入序列较长而不能... 针对传统自动文本摘要模型受循环神经网络长度限制而无法生成高质量的长文本摘要这一问题,提出了一种结合主题感知与通信代理的文本摘要模型。首先,将编码器划分为相互之间存在通信的多个代理,以解决长短期记忆网络输入序列较长而不能联合先验信息生成摘要的问题;然后,使用联合注意力机制加入主题信息,提高生成摘要与源文本的相关性;最后,使用带有强化学习的混合训练方法对模型进行训练,解决曝光偏差问题,直接对评价指标进行优化。实验结果表明,该模型不仅生成了主题突出的长文本摘要,并且得分比目前最先进的模型有一定提升。说明在主题信息的帮助下,该通信代理模型能够更好地生成长文本摘要。 展开更多
关键词 自动文本摘要 通信代理 主题感知 联合注意力机制 强化学习
下载PDF
面向高光谱场景分类的空—谱模型蒸馏网络
8
作者 薛洁 黄鸿 +3 位作者 蒲春宇 杨鄞铭 李远 刘英旭 《中国图象图形学报》 CSCD 北大核心 2024年第8期2205-2219,共15页
目的现有场景分类方法主要面向高空间分辨率图像,但这些图像包含极为有限的光谱信息,且现有基于卷积神经网络(convolutional neural network,CNN)的方法由于卷积操作的局部性忽略了远程上下文信息的捕获。针对上述问题,提出了一种面向... 目的现有场景分类方法主要面向高空间分辨率图像,但这些图像包含极为有限的光谱信息,且现有基于卷积神经网络(convolutional neural network,CNN)的方法由于卷积操作的局部性忽略了远程上下文信息的捕获。针对上述问题,提出了一种面向高光谱场景分类的空—谱模型蒸馏网络(spatial-spectral model distillation network for hyperspectral scene classification,SSMD)。方法选择基于空—谱注意力的ViT方法(spatial-spectral vision Transformer,SSViT)探测不同类别的光谱信息,通过寻找光谱信息之间的差异性对地物进行精细分类。利用知识蒸馏将教师模型SSViT捕获的长距离依赖信息传递给学生模型VGG16(Visual Geometry Group 16)进行学习,二者协同合作,教师模型提取的光谱信息和全局信息与学生模型提取的局部信息融合,进一步提升学生分类性能并保持较低的时间代价。结果实验在3个数据集上与10种分类方法(5种传统CNN分类方法和5种较新场景分类方法)进行了比较。综合考虑时间成本和分类精度,本文方法在不同数据集上取得了不同程度的领先。在OHID-SC(Orbita hyperspectral image scene classification dataset)、OHS-SC(Orbita hyperspectral scene classification dataset)和HSRS-SC(hyperspectral remote sensing dataset for scene classification)数据集上的精度,相比于性能第2的模型,分类精度分别提高了13.1%、2.9%和0.74%。同时在OHID-SC数据集中进行的对比实验表明提出的算法有效提高了高光谱场景分类精度。结论提出的SSMD网络不仅有效利用高光谱数据目标光谱信息,并探索全局与局部间的特征关系,综合了传统模型和深度学习模型的优点,使分类结果更加准确。 展开更多
关键词 高光谱场景分类 卷积神经网络(CNN) TRANSFORMER 空—谱联合注意力机制 知识蒸馏(KD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部