A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size an...A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.展开更多
The infinite diluted activity coefficients of solvents in polyisopropyl methylacrylate was measured using inverse gas chromatography. The solvents used were benzene, toluene, ethyl benzene, methyl acetate, ethyl aceta...The infinite diluted activity coefficients of solvents in polyisopropyl methylacrylate was measured using inverse gas chromatography. The solvents used were benzene, toluene, ethyl benzene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methanol, ethanol isopropyl alcohol, butyl alcohol, 1,2-dichloroethane, and chloroform. It was observed that the infinite diluted activity coefficient of alcohols are well above those of the other solvents investigated.展开更多
Diblock copolymers containing polystyrene (PSt) andpolybutyl methacrylate (PBMA)segnents and random coplymer of styrene (St) and butyl methacrylate (BMA) havebeen prepared by atom transfer radical polymerizanon (ATRP)...Diblock copolymers containing polystyrene (PSt) andpolybutyl methacrylate (PBMA)segnents and random coplymer of styrene (St) and butyl methacrylate (BMA) havebeen prepared by atom transfer radical polymerizanon (ATRP). Diblock copolymers ofBAN and St with predetermined molecular weight (1× 104ed.5 × 104)and narrowermolecular weight distribution(1.25~1.5) were obained The random copolymercompositions were determined by 1HNMR spectroscopy and the reactivity ratios wereevaluated by the extended Kelen-Tudos method to be γst=0.91, γBMA=0.32.展开更多
Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and ...Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties. Finally, the prepared magnetic composite particles latex is stable for several months.展开更多
Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to th...Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.展开更多
基金Supported by the National "863" Project (No. 2001 AA 320206)and Shanghai Nano Special Foundation(No. 0120nm034).
文摘A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.
基金Supported by the National Natural Science Foundation of China(No.29736170,No.29976011)
文摘The infinite diluted activity coefficients of solvents in polyisopropyl methylacrylate was measured using inverse gas chromatography. The solvents used were benzene, toluene, ethyl benzene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methanol, ethanol isopropyl alcohol, butyl alcohol, 1,2-dichloroethane, and chloroform. It was observed that the infinite diluted activity coefficient of alcohols are well above those of the other solvents investigated.
文摘Diblock copolymers containing polystyrene (PSt) andpolybutyl methacrylate (PBMA)segnents and random coplymer of styrene (St) and butyl methacrylate (BMA) havebeen prepared by atom transfer radical polymerizanon (ATRP). Diblock copolymers ofBAN and St with predetermined molecular weight (1× 104ed.5 × 104)and narrowermolecular weight distribution(1.25~1.5) were obained The random copolymercompositions were determined by 1HNMR spectroscopy and the reactivity ratios wereevaluated by the extended Kelen-Tudos method to be γst=0.91, γBMA=0.32.
文摘Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties. Finally, the prepared magnetic composite particles latex is stable for several months.
基金supported by the National Natural Science Foundation of China (21476024)the National Key Technology Support Program (2014BAE12B01)Beijing Municipal Science and Technology Project (Z151100003315005)
文摘Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing.