-
题名融合型UNet++网络的超声胎儿头部边缘检测
被引量:13
- 1
-
-
作者
邢妍妍
杨丰
唐宇姣
张利云
-
机构
南方医科大学生物医学工程学院
广东省医学图像处理重点实验室(南方医科大学)
-
出处
《中国图象图形学报》
CSCD
北大核心
2020年第2期366-377,共12页
-
基金
国家自然科学基金项目(61771233).
-
文摘
目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度。本文提出一种基于端到端的神经网络超声图像分割方法,用于胎儿头部边缘检测。方法以UNet++神经网络结构为基础,结合UNet++最后一层特征,构成融合型UNet++网络。训练过程中,为缓解模型训练过拟合问题,在每一卷积层后接一个空间dropout层。具体思路是通过融合型UNet++深度神经网络提取超声胎儿头部图像特征,通过胎儿头部区域概率图预测,输出胎儿头部语义分割的感兴趣区域。进一步获取胎儿的头部边缘关键点信息,并采用边缘曲线拟合方法拟合边缘,最终测量出胎儿头围大小。结果针对现有2维超声胎儿头围自动测量公开数据集HC18,以Dice系数、Hausdorff距离(HD)、头围绝对差值(AD)等指标评估本文模型性能,结果Dice系数为98.06%,HD距离为1.21±0.69 mm,头围测量AD为1.84±1.73 mm。在妊娠中期测试数据中,Dice系数为98.24%,HD距离为1.15±0.59 mm,头围测量AD为1.76±1.55 mm。在生物医学图像分析平台Grand Challenge上HC18数据集已提交结果中,融合型UNet++的Dice系数排在第3名,HD排在第2名,AD排在第10名。结论与经典超声胎儿头围测量方法及已有的机器学习方法应用研究相比,融合型UNet++能有效克服超声边界模糊、边缘缺失等干扰,精准分割出胎儿头部感兴趣区域,获取边缘关键点信息。与现有神经网络框架相比,融合型UNet++能充分利用上下文相关信息与局部定位功能,在妊娠中期的头围测量中,本文方法明显优于其他方法。
-
关键词
医学图像分割
UNet++
胎儿头部边缘检测
胎儿头围测量
深度学习
超声图像
-
Keywords
medical image segmentation
UNet++
fetal head edge detection
fetal head circumference measurement
deep learning
ultrasound image
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
R714.5
[医药卫生—妇产科学]
-