DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankt...DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitocbondrial cytochrome oxidase subunit 1 (coxl) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity〉96%) or genus level (similarity〈96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.展开更多
Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology.Compelling evidence indicates that Notch signaling is vital for v...Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology.Compelling evidence indicates that Notch signaling is vital for vascular morphogenesis including arterial and venous differentiation and endothelial tip and stalk cell specification during sprouting angiogenesis and also vessel maturation featured by mural cell differentiation and recruitment.Notch signaling is also required for vascular homeostasis in adults by keeping quiescent phalanx cells from re-entering cell cycle and by modulating the behavior of endothelial progenitor cells.We will summarize recent advances of Notch pathway in vascular biology with special emphasis on the underlying molecular mechanisms.展开更多
基金Supported by the National Natural Science Foundation of China(No.41230963)the National Basic Research Program of China(973 Program)(No.2011CB403604)+2 种基金the"135"Fund of Institute of Oceanology,Chinese Academy of Sciences(No.2012I0060102)the Innovative Research Group Funding of the National Natural Science Foundation of China(No.41121064)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020305)
文摘DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitocbondrial cytochrome oxidase subunit 1 (coxl) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity〉96%) or genus level (similarity〈96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.
基金supported by the National Natural Science Foundation of China(91339115,31370769,30830067)
文摘Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology.Compelling evidence indicates that Notch signaling is vital for vascular morphogenesis including arterial and venous differentiation and endothelial tip and stalk cell specification during sprouting angiogenesis and also vessel maturation featured by mural cell differentiation and recruitment.Notch signaling is also required for vascular homeostasis in adults by keeping quiescent phalanx cells from re-entering cell cycle and by modulating the behavior of endothelial progenitor cells.We will summarize recent advances of Notch pathway in vascular biology with special emphasis on the underlying molecular mechanisms.