Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensi...Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experi- mental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.展开更多
The paper presents the results of numerical modeling of hot spot growth process in detonation with account for turbulent mixing. The performed investigation has shown that large-scale HE (High explosives) particles ...The paper presents the results of numerical modeling of hot spot growth process in detonation with account for turbulent mixing. The performed investigation has shown that large-scale HE (High explosives) particles mix up and split down to smaller sizes in the result of shock wave impact, instability development on the HE-EP (Explosion product) interface and vortex flow; at these sizes, due to the developed surface of the HE-EP contact, HE has enough time to get heated (energy transfer from EP), and the decomposition reaction effectively continues. Numerical modeling make the calculation of the hot spot growth rate (about 100-200 m/s) possible. This has proved the hypothesis saying that at mechanical material transport the turbulence in the reaction zone plays an important role and it must be taken into account in the detonation theory.展开更多
文摘Resonant and nonresonant intermolecular vibrational energy transfers in Gdm- SCN/KSCN=1/1, GdmSCN/KS^13CN=1/1 and GdmSCN/KS^13C^15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experi- mental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.
文摘The paper presents the results of numerical modeling of hot spot growth process in detonation with account for turbulent mixing. The performed investigation has shown that large-scale HE (High explosives) particles mix up and split down to smaller sizes in the result of shock wave impact, instability development on the HE-EP (Explosion product) interface and vortex flow; at these sizes, due to the developed surface of the HE-EP contact, HE has enough time to get heated (energy transfer from EP), and the decomposition reaction effectively continues. Numerical modeling make the calculation of the hot spot growth rate (about 100-200 m/s) possible. This has proved the hypothesis saying that at mechanical material transport the turbulence in the reaction zone plays an important role and it must be taken into account in the detonation theory.