期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
眼电伪迹自动去除方法的研究与分析 被引量:7
1
作者 李明爱 梅意城 +1 位作者 孙炎珺 杨金福 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第11期2515-2523,共9页
脑电信号采集时很容易受到眼电信号的干扰,从而影响脑机接口系统的性能。为此,提出一种基于离散小波变换(DWT)和典型相关分析(CCA)的眼电伪迹自动去除方法,即DCCA法。首先,对采集的多导脑电信号和眼电信号进行离散小波变换,获得多尺度... 脑电信号采集时很容易受到眼电信号的干扰,从而影响脑机接口系统的性能。为此,提出一种基于离散小波变换(DWT)和典型相关分析(CCA)的眼电伪迹自动去除方法,即DCCA法。首先,对采集的多导脑电信号和眼电信号进行离散小波变换,获得多尺度小波系数,并利用典型相关分析去除小波系数间的相关性,得到互不相关的典型小波系数;进而,利用相关系数判别眼迹成分,将相应典型小波系数置零并依次采用CCA逆变换和DWT逆变换重构剔除眼电伪迹后的脑电信号。基于9位实验者的4种眼电数据进行实验研究,并从统计学的角度对实验结果进行显著性检验。结果表明,DCCA法相对其他方法在均方根误差、信噪比方面具有显著优势,且具有较好的实时性,并表现出较强的适应能力。 展开更多
关键词 脑电接口 伪迹去除 离散小波变换 典型相关分析 显著性检验
下载PDF
EEG processing and its application in brain-computer interface 被引量:3
2
作者 Wang Jing Xu Guanghua +5 位作者 Xie Jun Zhang Feng Li Lili Han Chengcheng Li Yeping Sun Jingjing 《Engineering Sciences》 EI 2013年第1期54-61,共8页
Electroencephalogram (EEG) is an efficient tool in exploring human brains. It plays a very important role in diagnosis of disorders related to epilepsy and development of new interaction techniques between machines an... Electroencephalogram (EEG) is an efficient tool in exploring human brains. It plays a very important role in diagnosis of disorders related to epilepsy and development of new interaction techniques between machines and human beings,namely,brain-computer interface (BCI). The purpose of this review is to illustrate the recent researches in EEG processing and EEG-based BCI. First,we outline several methods in removing artifacts from EEGs,and classical algorithms for fatigue detection are discussed. Then,two BCI paradigms including motor imagery and steady-state motion visual evoked potentials (SSMVEP) produced by oscillating Newton's rings are introduced. Finally,BCI systems including wheelchair controlling and electronic car navigation are elaborated. As a new technique to control equipments,BCI has promising potential in rehabilitation of disorders in central nervous system,such as stroke and spinal cord injury,treatment of attention deficit hyperactivity disorder (ADHD) in children and development of novel games such as brain-controlled auto racings. 展开更多
关键词 ELECTROENCEPHALOGRAM brain- computer interface artifacts removal fatigue detection steady- statemotion visual evoked potentials motor imagery
下载PDF
Individualization of Data-Segment-Related Parameters for Improvement of EEG Signal Classification in Brain-Computer Interface 被引量:1
3
作者 曹红宝 BESIO Walter G +1 位作者 JONES Steven 周鹏 《Transactions of Tianjin University》 EI CAS 2010年第3期235-238,共4页
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in... In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI. 展开更多
关键词 data segment parameter selection EEG classification brain-computer interface (BCI)
下载PDF
Electric Wheelchair Control System Using Brain-Computer Interface Based on Alpha-Wave Blocking 被引量:2
4
作者 明东 付兰 +8 位作者 陈龙 汤佳贝 綦宏志 赵欣 周鹏 张力新 焦学军 王春慧 万柏坤 《Transactions of Tianjin University》 EI CAS 2014年第5期358-363,共6页
A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control... A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min. 展开更多
关键词 electric wheelchair alpha-wave blocking brain-computer interface (BCI) success control rate
下载PDF
Brain-Computer Interface Design Using Signal Powers Extracted During Motor Imagery Tasks
5
作者 HE Ke-ren WANG Xin-guang +1 位作者 ZOU Ling MA Zheng-hua 《Chinese Journal of Biomedical Engineering(English Edition)》 2011年第4期139-149,共11页
Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode an... Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the 6al level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results. 展开更多
关键词 brain-computer interface motor imagery feature extraction pattern classification
下载PDF
Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface 被引量:1
6
作者 Bang-hua YANG Liang-fei HE Lin LIN Qian WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第6期486-496,共11页
Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interferenc... Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interference, but collecting EOG signals during a long-term EEG recording is inconvenient and uncomfortable for the subject. To remove ocular artifacts from EEG in brain-computer interfaces (BCIs), a method named spatial constraint independent component analysis based recursive least squares (SCICA-RLS) is proposed. The method consists of two stages. In the first stage, independent component analysis (ICA) is used to decompose multiple EEG channels into an equal number of independent components (ICs). Ocular ICs are identified by an automatic artifact detection method based on kurtosis. Then empirical mode decomposition (EMD) is employed to remove any cerebral activity from the identified ocular ICs to obtain exact altifact ICs. In the second stage, first, SCICA applies exact artifact ICs obtained in the first stage as a constraint to extract artifact ICs from the given EEG signal. These extracted ICs are called spatial constraint ICs (SC-ICs). Then the RLS based adaptive filter uses SC-ICs as reference signals to reduce interference, which avoids the need for parallel EOG recordings. In addition, the proposed method has the ability of fast computation as it is not necessary for SCICA to identify all ICs like ICA. Based on the EEG data recorded from seven subjects, the new approach can lead to average classification accuracies of 3.3% and 12.6% higher than those of the standard ICA and raw EEG, respectively. In addition, the proposed method has 83.5% and 83.8% reduction in time-consumption compared with the standard ICA and ICA-RLS, respectively, which demonstrates a better and faster OA reduction. 展开更多
关键词 Ocular artifacts Electroencephalogram (EEG) Electrooculogram (EOG) Brain-computer interface (BCI) Spatialconstraint independent component analysis based recursive least squares (SCICA-RLS)
原文传递
Stable and low-resistance polydopamine methacrylamide-polyacrylamide hydrogel for brain-computer interface 被引量:4
7
作者 Lanlan Liu Yafeng Liu +4 位作者 Ruitao Tang Jun Ai Yinji Ma Ying Chen Xue Feng 《Science China Materials》 SCIE EI CAS CSCD 2022年第8期2298-2308,共11页
Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalog... Signal drift and performance instability of brain-computer interface devices induced by the interface failure between rigid metal electrodes and soft human skin hinder the precise data acquisition of electroencephalogram(EEG).Thus,it is desirable to achieve a robust interface for brain-computer interface devices.Here,a kind of polydopamine methacrylamide-polyacrylamide(PDMA-PAAM)hydrogel is developed.To improve the adhesion,dopamine is introduced into the polyacrylamide hydrogel,through the amino and catechol groups of dopamine in an organic-inorganic interface to build a covalent and non-covalent interaction.A strong attachment and an effective modulus transition system can be formed between the metal electrodes and human skin,so that the peeling force between the PDMAPAAM hydrogel and the porcine skin can reach 22 N m^(-1).In addition,the stable conductivity and long-term operating life of the PDMA-PAAM hydrogel for more than 60 days at room temperature are achieved by adding sodium chloride(NaCl)and glycerol,respectively.The PDMA-PAAM hydrogel membrane fabricated in this work is integrated onto a flexible Au electrode applied in a brain-computer interface.In comparison,the collected EEG signal intensity and waveform are consistent with that of the commercial counterparts.And obviously,the flexible electrode with PDMA-PAAM hydrogel membrane is demonstrated to enable a more stable and userfriendly interface. 展开更多
关键词 flexible electronics DOPAMINE HYDROGELS braincomputer interface ELECTROENCEPHALOGRAM
原文传递
Electroencephalogram-based brain-computer interface for the Chinese spelling system: a survey
8
作者 Ming-hui SHI Chang-le ZHOU +8 位作者 Jun XIE Shao-zi LI Qing-yang HONG Min JIANG Fei CHAO Wei-feng REN Xiang-qian LIU Da-jun ZHOU Tian-yu YANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第3期423-436,共14页
Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscle... Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain's usual output pathways such as muscles. A popular application for EEGs is the EEG-based speller, which translates EEG signals into intentions to spell particular words, thus benefiting those suffering from severe disabilities, such as amyotrophic lateral sclerosis. Although the EEG-based English speller (EEGES) has been widely studied in recent years, few studies have focused on the EEG-based Chinese speller (EEGCS). The EEGCS is more difficult to develop than the EEGES, because the English alphabet contains only 26 letters. By contrast, Chinese contains more than 11000 logographic characters. The goal of this paper is to survey the literature on EEGCS systems. First, the taxonomy of current EEGCS systems is discussed to get the gist of the paper. Then, a common framework unifying the current EEGCS and EEGES systems is proposed, in which the concept of EEG-based choice acts as a core component. In addition, a variety of current EEGCS systems are investigated and discussed to highlight the advances, current problems, and future directions for EEGCS. 展开更多
关键词 Brain-computer interface(BCI) Electroencephalography(EEG) Chinese speller English speller
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部