Damage in rock salt has significant implication on permeability, which affects the tightness of underground salt cavern gas storage in further. During the leaching of a salt cavern, the brine with formation temperatur...Damage in rock salt has significant implication on permeability, which affects the tightness of underground salt cavern gas storage in further. During the leaching of a salt cavern, the brine with formation temperature and pressure can promote the self-healing of rock salt in the excavation damage zone (EDZ). Laboratory tests were conducted to study the promoting effect. The permeability of two intact rock salt specimens was tested. Then they were damaged into two kinds of the state respectively through uniaxial compression. After that, they were put in saturated brine (with a temperature of 50℃ and pressure of 12 MPa, which we called the repair environment in this paper) for 7 d. Finally, the permeability and mechanical properties were obtained after the damaged specimens being repaired. The results show that the permeability of intact rock salt is below 10^-19 m^2;the permeability increases by more than two orders because of damage;the permeability decreases significantly after being repaired, which can be comparable to its intact state. Discussions of the repair mechanisms are presented (especially the mechanism of recrystallization), which may help to provide significant guidance for the study of the tightness and stability of gas storage facilities in China.展开更多
The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of th...The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of the impeller's blades. Comparison of the results of the resonance frequency obtained from the model analysis, with those obtained from measurements on the actual object was shown. Measurements and simulations were conducted on the pump before and after the simulated damaged of the rotor. In order to verify the model the rotor of pump was weighted and compared with the masses of the respective components obtained from the virtual object. In the second stage genuine rotor was subjected to the experimental modal analysis.展开更多
基金Project(201704910741) supported by the China Scholarship CouncilProjects(51874274,51774266,51874273,51621006) supported by the National Natural Science Foundation of ChinaProject(2018YFC0808401) supported by the National Key Research and Development Program of China
文摘Damage in rock salt has significant implication on permeability, which affects the tightness of underground salt cavern gas storage in further. During the leaching of a salt cavern, the brine with formation temperature and pressure can promote the self-healing of rock salt in the excavation damage zone (EDZ). Laboratory tests were conducted to study the promoting effect. The permeability of two intact rock salt specimens was tested. Then they were damaged into two kinds of the state respectively through uniaxial compression. After that, they were put in saturated brine (with a temperature of 50℃ and pressure of 12 MPa, which we called the repair environment in this paper) for 7 d. Finally, the permeability and mechanical properties were obtained after the damaged specimens being repaired. The results show that the permeability of intact rock salt is below 10^-19 m^2;the permeability increases by more than two orders because of damage;the permeability decreases significantly after being repaired, which can be comparable to its intact state. Discussions of the repair mechanisms are presented (especially the mechanism of recrystallization), which may help to provide significant guidance for the study of the tightness and stability of gas storage facilities in China.
文摘The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of the impeller's blades. Comparison of the results of the resonance frequency obtained from the model analysis, with those obtained from measurements on the actual object was shown. Measurements and simulations were conducted on the pump before and after the simulated damaged of the rotor. In order to verify the model the rotor of pump was weighted and compared with the masses of the respective components obtained from the virtual object. In the second stage genuine rotor was subjected to the experimental modal analysis.