Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3 , which can be conducted at either high potential or low potential; however, the need for an external electrici...Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3 , which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3 , by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3 . In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.展开更多
基金Acknowledgements We thank the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21173017, 51272011, and 21275102), the Program for New Century Excellent Talents in University (No. NCET-12-0610), the Science and Technology Research Projects from Education Ministry (No. 213002A), National "Twelfth Five-Year" Plan for Science & Technology Support (No. 2013BAK12B06), the "thousands talents" program for pioneer researcher and his innovation team, China, National Natural Science Foundation of China (Nos. 51432005 and Y4YR011001), Beijing Municipal Commission of Science and Technology (Nos. Z131100006013004 and Z131100006013005).
文摘Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3 , which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3 , by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3 . In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.