In the paper we obtain two infinite classes of p-groups, calculate the orders of their automorphism groups and correct a mistake(perhaps misprinted) of Rodney James' paper in 1980.
A finite p-group G is called an LA-group if |G|||Aut(G)| when G is non-cyclic and |G|>p^2. This paper shows that a p-group of order p^n with an element of order p^(n-2) is an LA-group.
基金Supported by NNSF of China(60574052)Supported by NSF(05001820)Supported by PST of Guangdong(2005B33301008)
文摘In the paper we obtain two infinite classes of p-groups, calculate the orders of their automorphism groups and correct a mistake(perhaps misprinted) of Rodney James' paper in 1980.
文摘A finite p-group G is called an LA-group if |G|||Aut(G)| when G is non-cyclic and |G|>p^2. This paper shows that a p-group of order p^n with an element of order p^(n-2) is an LA-group.