Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of th...Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of the system, and its model precision is compared with those of finite element method(FEM), fixedinterface modal synthesis method and free-interface modal synthesis method. In the active control, the swing angle of rocket motor is used as design variable, and the control law design based on the model of mass center motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis method can properly approximate the FEM which is used as the benchmark solution, and the model precision of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and freeinterface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch vehicle is very small.展开更多
基金the National Natural Science Foundation of China(Nos.11132001,11272202 and 11472171)the Key Scientific Project of Shanghai Municipal Education Commission(No.14ZZ021)the Natural Science Foundation of Shanghai(No.14ZR1421000)
文摘Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of the system, and its model precision is compared with those of finite element method(FEM), fixedinterface modal synthesis method and free-interface modal synthesis method. In the active control, the swing angle of rocket motor is used as design variable, and the control law design based on the model of mass center motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis method can properly approximate the FEM which is used as the benchmark solution, and the model precision of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and freeinterface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch vehicle is very small.