采用粒子群优化(PSO)算法优化权重失真指数(LW D I),提出了基于粒子群优化的SOM(PSO-SOM)训练算法.用该算法取代K ohonen提出的启发式训练算法,同时引进核函数,以加强PSO-SOM算法的非线性聚类能力.以某工厂丙烯腈反应器数据为聚类应用...采用粒子群优化(PSO)算法优化权重失真指数(LW D I),提出了基于粒子群优化的SOM(PSO-SOM)训练算法.用该算法取代K ohonen提出的启发式训练算法,同时引进核函数,以加强PSO-SOM算法的非线性聚类能力.以某工厂丙烯腈反应器数据为聚类应用研究对象,研究结果表明,与启发式训练算法相比,PSO-SOM算法能够得到较优的聚类,而且该算法实现简单、便于工程应用,对丙烯腈反应器参数调整以及收率监测具有显著的指导作用.展开更多
文摘采用粒子群优化(PSO)算法优化权重失真指数(LW D I),提出了基于粒子群优化的SOM(PSO-SOM)训练算法.用该算法取代K ohonen提出的启发式训练算法,同时引进核函数,以加强PSO-SOM算法的非线性聚类能力.以某工厂丙烯腈反应器数据为聚类应用研究对象,研究结果表明,与启发式训练算法相比,PSO-SOM算法能够得到较优的聚类,而且该算法实现简单、便于工程应用,对丙烯腈反应器参数调整以及收率监测具有显著的指导作用.
基金Supported by the National Natural Science Foundation of China under Grant No.60773061the Jiangsu Ph.D.Students Innovative Foundation of China under Grant No.BCXJ05-05~~