期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于改进自适应局部迭代滤波的谐波检测方法研究 被引量:12
1
作者 杨德友 王博 蔡国伟 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第10期2274-2281,共8页
针对大量非线性负荷及电力电子设备广泛应用导致的电力系统谐波成份非平稳性和复杂性日益突出,难以识别和检测的问题,在引入自适应局部迭代滤波算法的基础上,提出了基于改进自适应迭代滤波与希尔伯特变换的谐波检测方法。改进自适应迭... 针对大量非线性负荷及电力电子设备广泛应用导致的电力系统谐波成份非平稳性和复杂性日益突出,难以识别和检测的问题,在引入自适应局部迭代滤波算法的基础上,提出了基于改进自适应迭代滤波与希尔伯特变换的谐波检测方法。改进自适应迭代滤波算法利用Fokker-Planck方程构建滤波函数,经滤波筛选获取具有平稳特征的本征模态分量,具有坚实的数学基础,且能够有效地避免经验模态分解算法存在的模态混叠问题。首先利用改进自适应迭代滤波算法分解得到周期分量,对各分量进行Hilbert变换,提取包括频率、幅值、相位在内的谐波特征参数。测试信号及实测数据分析结果证明了所用方法的有效性,与经验模态分解的对比结果充分验证了本方法在电力系统谐波检测中的强适应性。 展开更多
关键词 谐波参数检测 自适应局部迭代滤波 本征模态函数 希尔伯特变换
下载PDF
自适应局部迭代滤波与模糊熵在齿轮系统故障识别中的应用 被引量:6
2
作者 张文斌 江洁 +3 位作者 普亚松 俞利宾 郭德伟 闵洁 《机械传动》 北大核心 2021年第5期146-152,共7页
针对齿轮系统实测信号受噪声干扰而不能准确反映故障特征的问题,提出了一种自适应局部迭代滤波与模糊熵相结合的故障识别方法。利用自适应局部迭代滤波可以将齿轮非平稳信号分解为有限个平稳的本质模态函数,由于自适应局部迭代滤波能有... 针对齿轮系统实测信号受噪声干扰而不能准确反映故障特征的问题,提出了一种自适应局部迭代滤波与模糊熵相结合的故障识别方法。利用自适应局部迭代滤波可以将齿轮非平稳信号分解为有限个平稳的本质模态函数,由于自适应局部迭代滤波能有效分离出齿轮系统的转频信号,因此,以转频信号对应的本质模态函数为分界,计算前几个本质模态函数的模糊熵,最后,通过计算不同工况振动信号模糊熵的灰色关联度来识别齿轮系统不同的故障类型。结果表明,该方法能够有效地应用于齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 自适应局部迭代滤波 模糊熵
下载PDF
基于自适应局部迭代滤波和模糊C均值聚类的滚动轴承故障诊断方法 被引量:5
3
作者 张超 何闯进 何玉灵 《轴承》 北大核心 2021年第5期50-55,62,共7页
为准确提取滚动轴承振动信号的故障特征,并对不同状态信号进行划分,提出了一种基于自适应局部迭代滤波(ALIF)和模糊C均值(KFCM)聚类的滚动轴承故障诊断方法。首先,将多模态信号自适应分解为多阶单一模态分量;然后,结合相关系数提取出含... 为准确提取滚动轴承振动信号的故障特征,并对不同状态信号进行划分,提出了一种基于自适应局部迭代滤波(ALIF)和模糊C均值(KFCM)聚类的滚动轴承故障诊断方法。首先,将多模态信号自适应分解为多阶单一模态分量;然后,结合相关系数提取出含有最多故障特征信息的最优分量,计算其近似熵值并构建特征向量矩阵;最后,将得到的特征向量输入KFCM得到聚类结果。试验结果表明,与基于EMD,EEMD和KFCM聚类,以及ALIF和FCM聚类的方法相比,ALIF和KFCM方法的分类系数更接近1,平均模糊熵更接近0,聚类效果更好,对滚动轴承各类故障信号具有很高的识别度和良好的分类效果。 展开更多
关键词 滚动轴承 故障诊断 自适应局部迭代滤波 模糊C均值聚类 近似熵
下载PDF
自适应局部迭代滤波在齿轮故障识别中的应用
4
作者 郭德伟 普亚松 +3 位作者 江洁 俞利宾 闵洁 张文斌 《工矿自动化》 北大核心 2021年第1期74-80,I0004,共8页
针对齿轮实测信号因受噪声干扰而不能准确反映故障特征的问题,提出将自适应局部迭代滤波应用到齿轮故障识别中,与样本熵、灰色关联度相结合实现齿轮的故障识别。利用自适应局部迭代滤波将齿轮非平稳信号分解为有限个平稳的本质模态函数... 针对齿轮实测信号因受噪声干扰而不能准确反映故障特征的问题,提出将自适应局部迭代滤波应用到齿轮故障识别中,与样本熵、灰色关联度相结合实现齿轮的故障识别。利用自适应局部迭代滤波将齿轮非平稳信号分解为有限个平稳的本质模态函数,通过计算各本质模态函数的样本熵,发现以齿轮系统的转频信号对应的本质模态函数的样本熵为界,前几个本质模态函数的样本熵能表征不同故障类型的特征;计算齿轮系统正常、齿面轻度磨损、齿面中度磨损和断齿4种工况下多个训练样本的样本熵的平均值,将其作为对应工况标准故障模式的参考值;计算待检测样本的样本熵与各状态下训练样本的样本熵平均值之间的灰色关联度,与待识别样本灰色关联度最大的标准故障模式即被认为是待识别样本的故障类型。实例分析结果表明,通过自适应迭代滤波能有效抑制模态混叠现象,发现明显的齿轮转频信号,而采用集合经验模式分解(EEMD)方法进行信号分解后,模态混叠现象比较明显,且在EEMD的分解结果中基本看不出齿轮的转频分量;4种工况的样本熵曲线形状存在明显差异,说明样本熵能有效表征齿轮故障特征的变化;灰色关联度方法能有效地将4种不同的故障类型进行分类识别,分类识别性能优于BP神经网络,对小样本数据具有较好的分类识别能力。 展开更多
关键词 齿轮故障识别 自适应局部迭代滤波 样本熵 灰色关联度 转频信号
下载PDF
基于自适应局部迭代滤波和能量算子解调的滚动轴承故障特征提取 被引量:15
5
作者 陈保家 汪新波 +3 位作者 赵春华 陈法法 邱光银 田红亮 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第4期445-452,共8页
为了提高滚动轴承的故障特征提取可靠性,该文提出了一种基于自适应局部迭代滤波(Adaptive local iterative filtering,ALIF)和能量算子解调的滚动轴承故障特征提取的方法。该方法首先利用ALIF将轴承的故障振动信号分解为若干个本征模态... 为了提高滚动轴承的故障特征提取可靠性,该文提出了一种基于自适应局部迭代滤波(Adaptive local iterative filtering,ALIF)和能量算子解调的滚动轴承故障特征提取的方法。该方法首先利用ALIF将轴承的故障振动信号分解为若干个本征模态函数(Intrinsic mode function,IMF)分量,然后对包含故障信息最多的分量进行能量算子解调,得到分量的包络谱来提取轴承的故障特征。仿真结果表明:ALIF能够准确获取IMF分量,解决经验模式分解(Empirical mode decomposition,EMD)带来的模式混叠问题,结合能量算子解调方法能更好地凸显故障信号的包络谱特征,有效地提取轴承故障特征频率。 展开更多
关键词 自适应局部迭代滤波 本征模态函数 滚动轴承 能量算子 特征提取 经验模式分解 包络谱
下载PDF
基于自适应直接快速迭代滤波的滚动轴承故障诊断方法
6
作者 丁文海 郑近德 +2 位作者 潘海洋 孟瑞 牛礼民 《振动与冲击》 EI CSCD 北大核心 2023年第14期20-29,共10页
直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive... 直接快速迭代滤波(direct fast iterative filtering,DFIF)是最近提出的一种非线性和非平稳信号分析方法。针对DFIF方法需人为设定滤波区间调整参数,且该参数在迭代计算过程中缺乏自适应性等问题,提出了自适应直接快速迭代滤波(adaptive direct fast iterative filtering,ADFIF)方法,该方法基于瞬时频率波动能量差准则,自适应确定DFIF算法外循环每层迭代筛分过程中最优滤波区间调整参数。ADFIF方法能够自适应地将任意非线性和非平稳信号分解为若干个瞬时频率具有物理意义的近似窄带信号和一个趋势项之和。通过仿真信号和滚动轴承故障信号分析,将所提ADFIF方法与原DFIF、自适应局部迭代滤波、变分模态分解、经验模态分解等方法进行对比,结果表明,所提ADFF方法在抑制模态混叠和抗噪性方面具有一定的优势,且能提取出滚动轴承更多故障特征信息。 展开更多
关键词 快速滤波 自适应局部迭代滤波 滚动轴承 故障诊断
下载PDF
ALIF-NLM轴承微弱故障特征提取方法
7
作者 汪应 宋宇博 朱大鹏 《机械强度》 CAS CSCD 北大核心 2024年第5期1026-1035,共10页
针对强噪声背景下滚动轴承早期微弱故障特征难以提取的问题,结合自适应局部迭代滤波(Adaptive Local Iterative Filter,ALIF)和非局部均值(Non-Local Means,NLM)去噪方法的优势,提出了一种ALIF-NLM轴承微弱故障特征提取方法。首先,构建... 针对强噪声背景下滚动轴承早期微弱故障特征难以提取的问题,结合自适应局部迭代滤波(Adaptive Local Iterative Filter,ALIF)和非局部均值(Non-Local Means,NLM)去噪方法的优势,提出了一种ALIF-NLM轴承微弱故障特征提取方法。首先,构建了加权峭度-能量比准则来筛选ALIF分解的本征模态函数(Intrinsic Mode Function,IMF)分量并重构信号。其次,结合峭度对冲击信号的敏感性同能量熵对信号能量分布均匀性和复杂程度的评价性能构建最小能量熵-峭度比指标,并以该指标为适应度函数,利用粒子群优化(Particle Swarm Optimization,PSO)算法实现了NLM方法中参数组合的自适应选取。最后,利用自适应NLM对重构信号进行故障特征提取。仿真和试验分析结果表明,该方法能有效提取出强噪声背景下的滚动轴承微弱故障特征信息。 展开更多
关键词 强噪声 滚动轴承 自适应局部迭代滤波 粒子群优化 局部均值去噪 微弱特征提取
下载PDF
自适应MCKD和ALIF的滚动轴承早期故障诊断 被引量:2
8
作者 袁邦盛 肖涵 易灿灿 《机械设计与制造》 北大核心 2022年第4期77-82,共6页
针对滚动轴承故障信号冲击成分能量往往较低,故障特征频率难以提取以及最大相关峭度反褶积(Maximum Correlation Kurtosis Deconvolution,MCKD)降噪效果受限于滤波器L和位移数M等问题,提出了一种自适应最大相关峭度反褶积和自适应局部... 针对滚动轴承故障信号冲击成分能量往往较低,故障特征频率难以提取以及最大相关峭度反褶积(Maximum Correlation Kurtosis Deconvolution,MCKD)降噪效果受限于滤波器L和位移数M等问题,提出了一种自适应最大相关峭度反褶积和自适应局部迭代滤波(Adaptive Local Iterative Filter,ALIF)的滚动轴承故障特征提取方法。以排列熵为标准,应用步长搜寻法确定最佳的MCKD滤波器的长度和位移数,对采集的振动信号进行降噪预处理,突出被噪声所淹没的故障冲击;然后应用ALIF算法对降噪后的信号自适应分解为一组固有模态函数(IMF)分量,利用最大峭度准则选取包含故障信息量最大的分量,即敏感分量;最后对敏感分量进行包络谱分析,提取故障特征频率。仿真和试验分析结果证明了该方法的有效性和准确性。 展开更多
关键词 滚动轴承 最大相关峭度解卷积 自适应局部迭代滤波 故障特征频率
下载PDF
基于伪极值点的ALIF方法及其应用
9
作者 吴占涛 曹清泉 +3 位作者 袁毅 程军圣 杨宇 李宝庆 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第12期178-186,共9页
针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方... 针对自适应局部迭代滤波(Adaptive Local Iterative Filtering,ALIF)方法的模态混叠问题,提出了基于伪极值点的自适应局部迭代滤波(Pseudo-extrema-based Adaptive Local Iterative Filtering,PEALIF)方法.此方法采用增加伪极值点的方式使得信号极值点的分布更均匀,有效地抑制模态混叠问题的同时,亦保证了算法分解的顺序性.详细介绍了EPALIF方法的原理,同时构建仿真信号,将此方法与EMD、EEMD、CEEMD和ALIF方法进行分析和对比.结果表明PEALIF在分解能力、抑制模态混叠和抗噪声干扰等方面都具有一定的优越性.最后,将此方法应用在双半内圈轴承故障诊断中,实验结果表明PEALIF方法能获取更突出且易于辨识的故障特征信息,证实了该方法应用在轴承故障诊断分析上的实用性. 展开更多
关键词 自适应局部迭代滤波 伪极值点 模态混叠 故障诊断 双半内圈轴承
下载PDF
基于ALIF和ISOMAP的机械设备故障识别方法研究 被引量:6
10
作者 陈向俊 傅军平 +4 位作者 于晓 陈栋栋 李黎苹 胡炳涛 冯毅雄 《机床与液压》 北大核心 2023年第5期196-201,共6页
滚动轴承作为机械设备的重要部件,对机械设备的稳定运行起着重要的作用。滚动轴承的故障信号往往是多种信号的叠加,有必要对采集到的振动信号进行模式分解,进而基于模式识别方法实现对滚动轴承不同故障模式的分类识别。提出一种基于自... 滚动轴承作为机械设备的重要部件,对机械设备的稳定运行起着重要的作用。滚动轴承的故障信号往往是多种信号的叠加,有必要对采集到的振动信号进行模式分解,进而基于模式识别方法实现对滚动轴承不同故障模式的分类识别。提出一种基于自适应局部迭代滤波(ALIF)和等距特征映射(ISOMAP)的机械设备故障分类识别方法。利用ALIF对滚动轴承的故障信号进行模式分解;对选定的模式分量提取多个统计学特征;最后利用ISOMAP对高维特征信号进行降维处理,实现对滚动轴承不同故障模式的分类识别。研究结果表明:所提方法在滚动轴承故障识别上具有良好的效果。 展开更多
关键词 滚动轴承 自适应局部迭代滤波 等距特征映射 降维 故障识别
下载PDF
基于ALIF和TMFDE的滚动轴承故障诊断研究
11
作者 赵家浩 罗娜 梁永文 《制造技术与机床》 北大核心 2023年第7期9-15,共7页
为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各... 为了提高滚动轴承的故障识别精度,提出了一种基于自适应局部迭代滤波(ALIF)和时移多尺度波动散布熵(TMFDE)的故障诊断方法。首先,利用ALIF对滚动轴承振动信号进行分解,获得一组IMF分量。其次,为了获得更集成的IMF分量,基于能量法评估各IMF分量的重要性,将前3阶分量视为有效分量。接着,利用TMFDE量化有效分量中的特征信息,构建故障特征向量。最后,将故障特征输入至粒子群优化的极限学习机中进行故障识别。利用东南大学的滚动轴承数据对该方法进行了评估,结果表明该方法能够准确地识别故障的类型,与其他方法相比,该方法在数据量较少时仍然具有优异的稳定性。 展开更多
关键词 自适应局部迭代滤波 时移多尺度波动散布熵 能量法 滚动轴承 故障检测
下载PDF
基于ALIF+MCKD方法的冷轧机轴承振动故障信号处理 被引量:2
12
作者 程友杰 《山西冶金》 CAS 2023年第9期70-71,74,共3页
冷轧机在高载荷运行下容易出现轴承故障损伤。为了提高轴承在复杂环境下的振动信号抗干扰能力,设计了一种基于ALIF和MCKD方法的轴承振动信号处理及故障诊断方法。对仿真信号与轴承信号开展测试,该方法满足可靠性要求。研究结果表明:包... 冷轧机在高载荷运行下容易出现轴承故障损伤。为了提高轴承在复杂环境下的振动信号抗干扰能力,设计了一种基于ALIF和MCKD方法的轴承振动信号处理及故障诊断方法。对仿真信号与轴承信号开展测试,该方法满足可靠性要求。研究结果表明:包络谱能够对100 Hz故障特征与对应倍频成分进行分析,对噪声信号起到了明显的抑制效果,能够对故障信号进行准确提取。该研究有助于提高机械传统系统的故障诊断能力,具有很高的市场推广价值。 展开更多
关键词 轴承 故障诊断 自适应局部迭代滤波 相关峭度解卷积
下载PDF
基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测 被引量:13
13
作者 欧阳静 杨吕 +2 位作者 尹康 赵宇航 潘国兵 《太阳能学报》 EI CAS CSCD 北大核心 2022年第9期499-507,共9页
综合能源系统中风电、光伏等可再生能源出力具有波动性和间歇性,精准的短期负荷预测有利于平抑可再生能源对系统运行的影响。系统中的多元负荷时间序列为典型的非平稳性信号,难以进行精准地预测。为了从数据层面提高综合能源系统短期负... 综合能源系统中风电、光伏等可再生能源出力具有波动性和间歇性,精准的短期负荷预测有利于平抑可再生能源对系统运行的影响。系统中的多元负荷时间序列为典型的非平稳性信号,难以进行精准地预测。为了从数据层面提高综合能源系统短期负荷预测模型的精度,提出基于自适应局部迭代滤波(ALIF)的历史负荷数据分解方法,将历史负荷序列分解为具有不同频段模态函数的多个分量;针对预测模型训练中长时间序列处理困难及系统中多元负荷间耦合信息挖掘利用的问题,建立基于长短期记忆(LSTM)网络多任务学习的综合能源系统短期负荷预测模型。实验结果显示,与LSTM、ALIF-LSTM单任务学习、随机森林、LGBM方法相比,所提方法能够应对负荷波动剧烈的工况,预测精度较高,满足综合能源系统安全稳定运行控制的要求。 展开更多
关键词 可再生能源 长短期记忆网络 多任务学习 自适应局部迭代滤波 负荷预测 综合能源系统
原文传递
基于ALIF-HT的汽轮发电机组转子故障诊断 被引量:8
14
作者 唐贵基 庞彬 《动力工程学报》 CAS CSCD 北大核心 2017年第11期883-889,共7页
针对汽轮发电机组转子故障振动信号为多分量非平稳信号,将一种新的信号分解方法——自适应局部迭代滤波(ALIF)用于转子故障振动信号分解,并与希尔伯特变换(HT)相结合,提出了基于ALIF-HT的汽轮发电机组转子故障诊断方法:首先对转子原始... 针对汽轮发电机组转子故障振动信号为多分量非平稳信号,将一种新的信号分解方法——自适应局部迭代滤波(ALIF)用于转子故障振动信号分解,并与希尔伯特变换(HT)相结合,提出了基于ALIF-HT的汽轮发电机组转子故障诊断方法:首先对转子原始振动信号进行ALIF得到若干信号分量,再应用HT求取每个分量的瞬时频率,获取原信号全部信号分量的完整时频表示,最后根据转子故障振动信号的时频特征判别转子的故障类型.通过仿真信号分析验证ALIF对多分量信号的分解能力,并利用转子油膜失稳故障分析验证该方法的工程实用性.结果表明:ALIF方法能够有效克服经验模态分解(EMD)存在的模态混叠问题,使得ALIF-HT方法相对于希尔伯特黄变换(HHT)方法具有更高的时频分析精度. 展开更多
关键词 汽轮发电机组 转子 故障诊断 自适应局部迭代滤波 希尔伯特变换
下载PDF
基于ALIF和1DCNN的滚动轴承故障诊断方法 被引量:1
15
作者 聂勇军 孟金 肖英楠 《机电工程》 CAS 北大核心 2022年第10期1390-1397,共8页
在滚动轴承的故障信号中,由于存在较多冗余信息成分的问题,会对基于一维卷积神经网络(1DCNN)的故障诊断的准确度产生干扰,为此,提出了一种基于自适应局部迭代滤波算法(ALIF)和1DCNN的滚动轴承故障诊断方法,即先对原始信号分解重构,再进... 在滚动轴承的故障信号中,由于存在较多冗余信息成分的问题,会对基于一维卷积神经网络(1DCNN)的故障诊断的准确度产生干扰,为此,提出了一种基于自适应局部迭代滤波算法(ALIF)和1DCNN的滚动轴承故障诊断方法,即先对原始信号分解重构,再进行分类的智能故障诊断方法。首先,使用ALIF对原始信号进行了分解,其算法相较于其他信号分解算法有较少的模态混叠现象,这得益于保持其原始物理意义中,并最大程度地提取其表征信息,提高其故障诊断正确率;然后,使用了皮尔逊相关系数法选择与原始信号相关最大的本征模函数(IMF)进行了重构,得到了冗余信号较少的信号;最后,直接将处理后的数据作为1DCNN的输入,进行了智能故障诊断。研究结果表明:在对滚动轴承的4种故障状态进行分类的准确度方面,相较于原始方法,基于ALIF和1DCNN的方法准确度提高了8%,其分类准确度达到99%;仿真信号证明了ALIF分解性能的优越性,采用实验台采集的实际数据验证了该方法的先进性。 展开更多
关键词 自适应局部迭代滤波 一维卷积神经网络 信号分解重构 故障分类 冗余信息成分 模态混叠 故障诊断准确率
下载PDF
ALIF-MMPE结合DAG-SVM的滚动轴承故障诊断 被引量:8
16
作者 韩美东 张金豹 赵永强 《机械科学与技术》 CSCD 北大核心 2020年第9期1358-1365,共8页
针对滚动轴承故障诊断中非平稳振动信号下的有效故障特征提取问题,提出一种基于自适应局部迭代滤波、多元多尺度排列熵和有向无环图算法支持向量机的滚动轴承故障诊断方法。自适应局部迭代滤波通过构建自适应滤波函数,能够有效抑制噪声... 针对滚动轴承故障诊断中非平稳振动信号下的有效故障特征提取问题,提出一种基于自适应局部迭代滤波、多元多尺度排列熵和有向无环图算法支持向量机的滚动轴承故障诊断方法。自适应局部迭代滤波通过构建自适应滤波函数,能够有效抑制噪声和模态混叠,经自适应分解后得到若干本征模态函数。仿真结果表明其效果优于经验模态分解。然后利用多元多尺度排列熵对包含显著故障信息的本征模态函数进行信息融合和特征提取,组成故障状态特征集。采用主成分分析对故障状态特征集进行降维,随机抽取部分样本带入有向无环图算法支持向量机中进行训练,其它则作为测试样本进行故障识别和诊断。试验故障诊断结果表明:自适应局部迭代滤波下多元多尺度排列熵优于多个本征模态函数下的多尺度排列熵和经验模态分解下的多元多尺度排列熵;本文方法能准确地识别滚动轴承不同的故障类型及故障程度。 展开更多
关键词 轴承故障诊断 自适应局部迭代滤波 多元多尺度排列熵 有向无环图算法支持向量机
下载PDF
基于改进AILF与JRD算法的轴承损伤量化评估研究 被引量:1
17
作者 张震 刘保国 +1 位作者 周万春 黄传金 《机电工程》 CAS 北大核心 2022年第4期460-466,473,共8页
在对轴承损伤进行量化评估时,在特征提取算法方面易出现模态混叠、收敛速度慢的现象,同时在轴承损伤的评估指标方面,由于工况的变化也容易导致其鲁棒性差、精确度不高,而难以满足实际的需求,针对上述一系列问题,提出了一种以改进的自适... 在对轴承损伤进行量化评估时,在特征提取算法方面易出现模态混叠、收敛速度慢的现象,同时在轴承损伤的评估指标方面,由于工况的变化也容易导致其鲁棒性差、精确度不高,而难以满足实际的需求,针对上述一系列问题,提出了一种以改进的自适应局部迭代滤波(ALIF)算法作为性能退化特性提取算法,以频带间能量JRD距离作为评估指标的轴承损伤量化评估算法。为了提高AILF算法的收敛速度和精度,首先,将具有主成分分析(PCA)特性的奇异值分解(SVD)算法作为AILF算法的前置滤波单元;然后,采用AILF将通过前置处理的信号进行自适应迭代分解;最后,以频带间能量的JRD距离作为评估指标,对轴承的损伤状态进行了量化评估实验以及加速寿命实验。研究结果表明:在量化评估轴承损伤和监测其全寿命性能退化状态方面,该评估算法具有较好的效果;在外界工况发生变化时,与其它的相关算法相比,该量化评估算法具有更好的鲁棒性和量化积聚性,能够更加灵敏地辨识轴承的早期性能退化,因此,该算法在工程实际中具有良好的应用前景。 展开更多
关键词 轴承 损伤量化评估 性能退化 自适应局部迭代滤波算法 JRD 奇异值分解算法
下载PDF
基于ALIF-PE-GOLSSVM的齿轮箱故障诊断 被引量:5
18
作者 黄英 李喜梅 +1 位作者 叶仁虎 王睿 《机械传动》 北大核心 2022年第11期146-153,共8页
提出了基于基因优化最小二乘支持向量机(Gene optimized least squares support vector ma⁃chine,GOLSSVM)的自适应局部迭代滤波(Adaptive local iterative fittering,ALIF)和排列熵(Permuta⁃tion entropy,PE)的故障诊断方法,并将该方... 提出了基于基因优化最小二乘支持向量机(Gene optimized least squares support vector ma⁃chine,GOLSSVM)的自适应局部迭代滤波(Adaptive local iterative fittering,ALIF)和排列熵(Permuta⁃tion entropy,PE)的故障诊断方法,并将该方法应用于齿轮箱的诊断,成功实现了对齿轮箱4种故障种类的识别。针对排列熵无法直接识别齿轮箱不同故障类别的问题,利用ALIF方法相较于EMD方法在去除残余噪声及抑制模式混叠上的优势,使用ALIF方法对故障信号进行降噪,提取有效分量,再计算有分量的PE值(C-PE值),以获得振动信号的多尺度特性;然后,使用基因算法对最小二乘支持向量机(Least squares support vector machine,LSSVM)进行了优化;最后,将特征向量输入到GOLSSVM,对故障特征进行分类。结果表明,所提方法相比BP神经网络和SVM在故障识别精度上有优势。 展开更多
关键词 基因优化 支持向量机 自适应局部迭代滤波 排列熵
下载PDF
ALIF和MCKD相结合的滚动轴承早期故障诊断 被引量:4
19
作者 陈明 马洁 《机械科学与技术》 CSCD 北大核心 2021年第7期1016-1024,共9页
滚动轴承早期故障特征信息十分微弱并夹杂着环境噪声的干扰,使其信噪比极低,造成微弱故障难以提取。针对这一问题,提出了一种基于自适应局部迭代滤波(Adaptive local iterative filter, ALIF)和最大相关峭度解卷积(Maximum correlated k... 滚动轴承早期故障特征信息十分微弱并夹杂着环境噪声的干扰,使其信噪比极低,造成微弱故障难以提取。针对这一问题,提出了一种基于自适应局部迭代滤波(Adaptive local iterative filter, ALIF)和最大相关峭度解卷积(Maximum correlated kurtosis deconvolution, MCKD)两者相结合的滚动轴承早期故障诊断方法。首先对采集到的振动信号应用ALIF进行分解得到若干个窄带本征模态函数(Intrinsic mode functions, IMFs),根据相关系数-峭度准则筛选出两个较为敏感的IMF分量进行重构降噪;然后对重构降噪后的信号采用MCKD算法增强故障特征中的冲击成分;最后对应用ALIF-MCKD增强后的信号进行包络谱解调分析,提取出故障特征从而判断轴承故障发生位置。 展开更多
关键词 滚动轴承 故障诊断 自适应局部迭代滤波 最大相关峭度解卷积
下载PDF
基于ALIFD模糊熵和GK聚类的滚动轴承故障诊断
20
作者 葛红平 刘晓波 《失效分析与预防》 2019年第2期71-78,共8页
针对滚动轴承故障振动信号具有非平稳性及非线性的特点,提出一种基于自适应局部迭代滤波分解(ALIFD)模糊熵和GK聚类的滚动轴承故障诊断方法。首先对滚动轴承故障振动信号进行ALIFD分解,得到若干个本征模态函数(IMF)分量,然后通过相关性... 针对滚动轴承故障振动信号具有非平稳性及非线性的特点,提出一种基于自适应局部迭代滤波分解(ALIFD)模糊熵和GK聚类的滚动轴承故障诊断方法。首先对滚动轴承故障振动信号进行ALIFD分解,得到若干个本征模态函数(IMF)分量,然后通过相关性分析筛选出前3个包含主要特征信息的IMF分量,并将筛选的IMF分量的模糊熵作为特征向量,最后利用GK聚类对所得的特征向量进行识别分类。将该方法应用于滚动轴承实验数据分析,并使用分类系数和平均模糊熵对分类性能进行评价,结果表明,与基于经验模态分解模糊熵和GK聚类的故障诊断方法进行对比,该方法具有更好的分类性能。 展开更多
关键词 滚动轴承 自适应局部迭代滤波分解 模糊熵 GK聚类 故障诊断
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部