期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计 被引量:76
1
作者 程泽 杨磊 孙幸勉 《中国电机工程学报》 EI CSCD 北大核心 2018年第8期2384-2393,共10页
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalma... 为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。 展开更多
关键词 锂离子电池 荷电状态 健康状态 Sage-Husa滤波 自适应平方根无迹卡尔曼滤波
原文传递
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法
2
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
下载PDF
非线性自适应平方根无迹卡尔曼滤波方法研究 被引量:18
3
作者 张玉峰 周奇勋 +1 位作者 周勇 张举中 《计算机工程与应用》 CSCD 北大核心 2016年第16期36-40,共5页
针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法... 针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法相结合用来进行非线性滤波。该算法能直接对非线性系统的状态方差阵和噪声方差阵的平方根进行递推与估算,确保状态和噪声方差阵的对称性和非负定性。将所提方法通过计算机仿真技术与SRUKF算法进行对比,结果表明NASRUKF方法在滤波精度、稳定性和自适应能力方面均优于SRUKF方法。 展开更多
关键词 非线性自适应平方根无迹卡尔曼滤波方法(NASRUKF) 卡尔曼滤波 平方根无迹卡尔曼滤波(SRUKF) Sage-Husa滤波 非线性滤波 预估
下载PDF
基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计 被引量:8
4
作者 田彦涛 张宇 +1 位作者 王晓玉 陈华 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第3期845-852,共8页
针对电动汽车质心侧偏角不便使用传感器直接测量的问题,提出采用平方根无迹卡尔曼滤波(SR-UKF)算法来估计电动汽车质心侧偏角。基于建立的车辆侧向动力学模型、非线性轮胎动力学模型以及估计得到的质心侧偏角,使用最小二乘法对轮胎侧偏... 针对电动汽车质心侧偏角不便使用传感器直接测量的问题,提出采用平方根无迹卡尔曼滤波(SR-UKF)算法来估计电动汽车质心侧偏角。基于建立的车辆侧向动力学模型、非线性轮胎动力学模型以及估计得到的质心侧偏角,使用最小二乘法对轮胎侧偏刚度进行估计,得到轮胎侧偏刚度信息。最后,通过试验验证了基于SR-UKF的电动汽车质心侧偏角估计算法具有较高的精度,能够为后续车辆稳定性控制系统的设计提供有效的车辆状态信息。 展开更多
关键词 自动控制技术 侧偏角估计 轮胎侧偏刚度 平方根无迹卡尔曼滤波算法 最小二乘法
下载PDF
基于修正的自适应平方根容积卡尔曼滤波算法 被引量:9
5
作者 李春辉 马健 +3 位作者 杨永建 肖冰松 邓有为 盛涛 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期1824-1830,共7页
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root... 目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCKF)的基础上,提出一种基于修正的自适应SRCKF算法。该算法通过设置判定门限和修正准则,直接对状态预测值或滤波增益进行修正以平衡先验的预测值和后验反馈的量测值在滤波中所占的比重,进而减小状态估计误差。仿真结果表明,所提算法具有在目标状态突变和量测非线性时的良好滤波性能和数值稳定性,同时相比较需要计算渐消因子的STF算法,该算法在计算量和收敛速度上具有优势。 展开更多
关键词 目标建模 平方根容积卡尔曼滤波 修正算法 自适应滤波
下载PDF
基于平方根无迹卡尔曼滤波平滑算法的水下纯方位目标跟踪(英文) 被引量:12
6
作者 王宝宝 吴盘龙 《中国惯性技术学报》 EI CSCD 北大核心 2016年第2期180-184,共5页
为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法... 为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法得到的目标状态估计向后平滑,得到前一时刻目标状态估计,再利用该状态估计值进行再次滤波得到当前时刻目标状态估计。该算法得到的前一时刻的目标状态估计更加精确,从而进一步提高了目标跟踪的精度。最后,通过对SR-UKFS算法和SR-UKF算法的跟踪性能进行了对比分析和验证,仿真结果表明在相同条件下,SR-UKFS算法能减少59%的位置误差和54%的速度误差,SR-UKFS算法应用于水下纯方位目标跟踪系统是有效的,为水下纯方位目标跟踪系统的工程实现提供了非常有价值的参考。 展开更多
关键词 目标跟踪 纯方位 平方根无迹卡尔曼滤波 平滑算法 前向滤波 后向平滑
下载PDF
基于平方根无迹卡尔曼滤波的锂电池状态估计 被引量:37
7
作者 费亚龙 谢长君 +2 位作者 汤泽波 曾春年 全书海 《中国电机工程学报》 EI CSCD 北大核心 2017年第15期4514-4520,共7页
在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方... 在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。 展开更多
关键词 锂电池 荷电状态 平方根无迹卡尔曼滤波 无迹 变换 平方根算法
原文传递
基于自适应无迹卡尔曼滤波算法的多股螺旋弹簧动态响应模型参数辨识和分析 被引量:7
8
作者 丁传俊 张相炎 刘宁 《兵工学报》 EI CAS CSCD 北大核心 2018年第1期28-37,共10页
针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线... 针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线性模型参数辨识的收敛性;结合多股簧动态试验对该算法进行检验。研究结果表明:即使在量测噪声级别较高的情况下,AUKF算法也可以准确地求出多股簧的动力学模型参数;在预测多股簧动态响应过程中,若预测振幅和参数辨识所用振幅相差太大则会导致较大的预测误差;当加载速度变化时,多股簧动力学模型中的迟滞部分参数基本不变,但0阶非线性刚度系数和非线性放大因子变化较大。 展开更多
关键词 多股螺旋弹簧 参数辨识 非线性迟滞模型 自适应无迹卡尔曼滤波算法
下载PDF
基于改进自适应无迹卡尔曼滤波的国产民机导航数据滤波算法 被引量:5
9
作者 杨军利 王立新 +1 位作者 钱宇 刘瑜 《科学技术与工程》 北大核心 2021年第35期15123-15129,共7页
针对国产民用飞机导航数据存在杂波不能准确测量的问题,提出一种基于改进自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法的导航数据滤波方法。将无迹卡尔曼滤波(unscented Kalman filter,UKF)与改进Sage-Husa次优无... 针对国产民用飞机导航数据存在杂波不能准确测量的问题,提出一种基于改进自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法的导航数据滤波方法。将无迹卡尔曼滤波(unscented Kalman filter,UKF)与改进Sage-Husa次优无偏极大后验噪声估计器结合构造出改进AUKF,有效解决了在模型不确定或干扰信号统计特性不完全得知的情况下,滤波精度低甚至发散的问题,同时与维纳滤波器和小波阈值法滤波效果进行对比。选择ARJ21飞机实际运行的高度、经度及纬度数据进行仿真。结果表明:改进后的AUKF算法较其他滤波算法精度更高,有效提高了导航数据的可靠性。研究对提高国产民机导航定位精度具有重要意义。 展开更多
关键词 自适应无迹卡尔曼滤波 Sage-Husa算法 维纳滤波 小波阈值法 国产民用飞机
下载PDF
基于目标优化和卡尔曼滤波的SOC估算方法
10
作者 邢展 王建宇 +2 位作者 闫晓钰 罗玉珺 涂燕 《电源技术》 北大核心 2025年第1期176-183,共8页
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法... 准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。 展开更多
关键词 蓄电池 SOC在线估算 蜣螂优化算法 自适应无迹卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波的锂电池SOC估计 被引量:20
11
作者 刘胜永 于跃 +2 位作者 罗文广 李昊 黄俊华 《控制工程》 CSCD 北大核心 2017年第8期1611-1616,共6页
锂电池荷电状态(SOC)的准确估算是制约电动汽车发展的关键技术之一。针对传统Kalman滤波算法因固定的噪声滤波初值不能够跟随工况变化致使SOC估算不准确的问题,基于PNGV模型建立状态空间方程组,将Sage-Husa自适应滤波算法融合到无迹卡... 锂电池荷电状态(SOC)的准确估算是制约电动汽车发展的关键技术之一。针对传统Kalman滤波算法因固定的噪声滤波初值不能够跟随工况变化致使SOC估算不准确的问题,基于PNGV模型建立状态空间方程组,将Sage-Husa自适应滤波算法融合到无迹卡尔曼滤波(UKF)算法之中,对噪声进行实时预测和修正,进而提高SOC的估算精度。仿真实验结果表明,AUKF比UKF的估算值更接近于理论参考值,AUKF解决了UKF因固定噪声带来的误差问题,可提高电动汽车启动、巡航、制动等复杂工况下的电池组电流剧烈变化中SOC的估算精度。 展开更多
关键词 自适应无迹卡尔曼滤波(AUKF) 荷电状态(SOC) Sage-Husa自适应滤波算法 无迹卡尔曼滤波(UKF) PNGV模型
原文传递
基于噪声估计的自适应无迹卡尔曼滤波算法 被引量:4
12
作者 叶泽浩 宋亚伟 +1 位作者 陈传生 何成伟 《空天预警研究学报》 2022年第4期242-246,251,共6页
针对无迹卡尔曼滤波算法(UKF)需要借助较为准确的系统模型和噪声才能给出较为良好的滤波结果这一问题,提出了一种基于噪声估计的自适应无迹卡尔曼滤波算法(NEA-UKF).首先将SAGE-HUSA算法原理引入到UKF算法中,使UKF算法具有自适应估计状... 针对无迹卡尔曼滤波算法(UKF)需要借助较为准确的系统模型和噪声才能给出较为良好的滤波结果这一问题,提出了一种基于噪声估计的自适应无迹卡尔曼滤波算法(NEA-UKF).首先将SAGE-HUSA算法原理引入到UKF算法中,使UKF算法具有自适应估计状态噪声和量测噪声的能力;然后在状态噪声和量测噪声估计方程中引入记忆指数衰减加权以及协方差匹配判据,提高了噪声的实时估计精度和稳定性;最后针对状态模型和状态噪声不准确情况下的目标进行跟踪仿真.仿真结果表明,NEA-UKF算法能较好地自适应调节状态噪声和状态噪声协方差矩阵去匹配目标的运动状态,且几乎不受目标状态的突变影响,保持了对目标的良好跟踪. 展开更多
关键词 无迹卡尔曼滤波算法 SAGE-HUSA算法 自适应估计 目标跟踪
下载PDF
基于自适应无迹卡尔曼滤波的动力电池SOC估计 被引量:11
13
作者 张武 孙士山 张家福 《电源技术》 CAS 北大核心 2021年第1期14-17,共4页
针对传统无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电池SOC时,在未知的干扰噪声条件下滤波精度较低和稳定性较差等问题,基于等效的二阶RC电路模型,提出自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法。... 针对传统无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电池SOC时,在未知的干扰噪声条件下滤波精度较低和稳定性较差等问题,基于等效的二阶RC电路模型,提出自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法。在模型参数辨识的基础上,构建了系统状态方程以及量测方程;随后,研究了无迹卡尔曼滤波算法及其自适应调整策略。根据仿真结果可知,该算法估计的电池SOC最大误差小于2.13%,估算精度及收敛速度均好于传统无迹卡尔曼滤波算法。 展开更多
关键词 二阶RC等效电路模型 无迹卡尔曼滤波 电池SOC 自适应算法
下载PDF
一种基于自适应卡尔曼滤波的ADS-B点迹跟踪处理方法 被引量:2
14
作者 杜世勇 李枢 唐川 《电子世界》 CAS 2021年第5期110-112,共3页
广播式自动相关监视技术(ADS-B),是基于卫星定位数据,通过地空、空空数据链通信对外广播本机状态信息,并接收其他飞机信息的空管监视技术。针对密集飞行的点迹跟踪处理问题,建立了基于ADS-B监视的密集飞行模型,采用了一种基于"当前... 广播式自动相关监视技术(ADS-B),是基于卫星定位数据,通过地空、空空数据链通信对外广播本机状态信息,并接收其他飞机信息的空管监视技术。针对密集飞行的点迹跟踪处理问题,建立了基于ADS-B监视的密集飞行模型,采用了一种基于"当前"统计模型的自适应卡尔曼滤波算法进行点迹数据处理。仿真结果表明:自适应卡尔曼滤波算法在收敛速度和跟踪精度方面优于常规卡尔曼滤波算法,适合密集飞行目标的近距离跟踪。 展开更多
关键词 自适应卡尔曼滤波算法 监视技术 广播式自动相关监视 对外广播 距离跟踪 统计模型 数据处理
下载PDF
基于FFRLS和ASR-UKF滤波算法的锂电池SOC估计 被引量:1
15
作者 邓丹 刘胜永 +2 位作者 王顺利 刘鹏辉 胡聪 《电源技术》 CAS 北大核心 2024年第2期299-305,共7页
锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线... 锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线性及系统噪声不确定性等缺点,提出了一种自适应平方根无迹卡尔曼滤波(ASR-UKF)算法,该算法利用平方根算法处理均值和协方差,确保了状态协方差的半正定性和稳定性,并引入自适应滤波算法对噪声进行实时修正,消除了系统时变噪声影响。结果表明,FFRLS能有效解决数据饱和及算法矩阵计算量大的问题,等效模型精度高达98%。在混合动力脉冲特性(HPPC)测试和北京公交动态测试工况(BBDST)下,ASR-UKF算法SOC估计最大误差分别为3.264%和0.572%,具备更好的跟踪效果,验证了改进算法良好的收敛性与自适应性。 展开更多
关键词 荷电状态 二阶Thevenin模型 遗忘因子递推最小二乘法 自适应平方根无迹卡尔曼滤波算法
下载PDF
基于遗传模糊推理的自适应UKF组合测姿滤波算法 被引量:1
16
作者 肖文健 路平 《航天控制》 CSCD 北大核心 2013年第5期35-40,共6页
针对常规UKF在组合测姿中自适应性不足的问题,提出一种基于遗传模糊推理的自适应UKF组合测姿滤波算法。首先建立了基于模糊推理的自适应UKF,利用模糊推理系统对组合测姿系统的量测噪声统计特性进行调整,以实现状态的准确估计。然后利用... 针对常规UKF在组合测姿中自适应性不足的问题,提出一种基于遗传模糊推理的自适应UKF组合测姿滤波算法。首先建立了基于模糊推理的自适应UKF,利用模糊推理系统对组合测姿系统的量测噪声统计特性进行调整,以实现状态的准确估计。然后利用遗传算法对模糊推理系统的隶属度函数参数进行了离线优化,以提高系统精度。最后以陀螺仪、加速度计和磁强计组成的组合测姿系统进行了实验。实验结果表明,基于遗传模糊推理的自适应UKF在量测噪声变化时仍能保持较好的测量精度,具有较强的自适应能力。 展开更多
关键词 组合测姿 无迹卡尔曼滤波 遗传算法 模糊推理 自适应
原文传递
基于WLS-AUKF混合算法的主动配电网联合状态估计
17
作者 满延露 刘敏 《电子科技》 2025年第2期93-102,共10页
响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit,PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波... 响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit,PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波(Adaptive Untraced Kalman Filtering,AUKF)的主动配电网联合状态估计。通过改进粒子群优化算法(Metropolis-Hastings Crossover Particle Swarm Optimization,MHCPSO)实现PMU优化配置,再结合WLS和AUKF提出联合状态估计。联合方式是WLS为AUKF馈送稳健的量测数据,AUKF为WLS提供先验预测值并补充量测冗余。仿真结果表明,在相同PMU数量下,MHCPSO算法比遗传粒子群算法(Genetic Algorithm Particle Swarm Optimization,GAPSO)估计精度更高。在相同状态估计误差情况下,MHCPSO算法配置的PMU数量比GAPSO算法可最多减少4个。在光伏(Photovoltaic,PV)/电动汽车(Electric Vehicles,EV)并网无序充放电和某一时刻负荷突变情况下,WLS-AUKF算法均体现出了比UKF(Untraced Kalman Filtering)算法更好的估计性能。在PMU配置优化、PV/VE并网以及负荷突变3个场景中体现出了WLS-AUKF状态估计的高精度、经济性、抗差性和稳健性。 展开更多
关键词 主动配电网 联合状态估计 加权最小二乘法 自适应无迹卡尔曼滤波 PMU优化配置 改进粒子群算法 两点交叉法 Metropolis-Hastings算法 遗传粒子群算法
下载PDF
基于自适应Kalman滤波的智能电网假数据注入攻击检测 被引量:15
18
作者 罗小元 潘雪扬 +1 位作者 王新宇 关新平 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期2960-2971,共12页
研究了一种针对智能电网中假数据注入攻击的有效检测方法.假数据注入攻击可以保持攻击前后残差基本不变,绕过传统的不良数据检测技术.首先基于电网模型,分析了假数据注入攻击的攻击特性,针对噪声统计特性未知且无迹Kalman滤波(Unscented... 研究了一种针对智能电网中假数据注入攻击的有效检测方法.假数据注入攻击可以保持攻击前后残差基本不变,绕过传统的不良数据检测技术.首先基于电网模型,分析了假数据注入攻击的攻击特性,针对噪声统计特性未知且无迹Kalman滤波(Unscented Kalman filter,UKF)不稳定的现象,提出了自适应平方根无迹Kalman滤波改进算法.基于状态估计值,结合中心极限定理提出检测算法,并与欧几里得检测方法、巴氏系数检测方法进行比较.最后,仿真表明本文所提检测算法的优越性. 展开更多
关键词 智能电网 虚假数据注入攻击 攻击检测 自适应平方根无迹卡尔曼滤波
下载PDF
基于SVD的机动目标自适应滤波研究与仿真 被引量:6
19
作者 石章松 王树宗 刘忠 《海军工程大学学报》 CAS 2003年第2期53-56,共4页
由于计算误差等因素的影响,致使滤波协方差阵不对称或负定,从而导致滤波器发散,影响滤波算法的收敛速度和稳定性.该研究在机动加速度"当前"统计自适应卡尔曼滤波算法的基础上,引入了基于奇异值分解(SVD)的协方差平方根滤波的... 由于计算误差等因素的影响,致使滤波协方差阵不对称或负定,从而导致滤波器发散,影响滤波算法的收敛速度和稳定性.该研究在机动加速度"当前"统计自适应卡尔曼滤波算法的基础上,引入了基于奇异值分解(SVD)的协方差平方根滤波的自适应卡尔曼滤波算法.仿真结果表明,该算法可以较好地跟踪机动目标,具有精度高、稳定好、收敛快等特点. 展开更多
关键词 SVD 机动目标跟踪 自适应滤波 滤波 奇异值分解 卡尔曼滤波算法 加速度模型 自适应平方根滤波算法
下载PDF
基于自适应修正UKF算法的网络多平台无源定位跟踪系统 被引量:1
20
作者 刘怀远 《现代导航》 2016年第1期60-65,共6页
针对传统网络多平台机载无源定位跟踪存在作战区域有限,精度低,易出现盲点等缺点,提出了在多平台时差算法的基础上引入一种自适应修正的无迹卡尔曼滤波算法进行机载无源定位跟踪。考虑不同的作战环境,对模型进行了推导和分析,采用不同... 针对传统网络多平台机载无源定位跟踪存在作战区域有限,精度低,易出现盲点等缺点,提出了在多平台时差算法的基础上引入一种自适应修正的无迹卡尔曼滤波算法进行机载无源定位跟踪。考虑不同的作战环境,对模型进行了推导和分析,采用不同的算法对模糊、无解问题中出现的奇异点进行了滤波结果比较。证实使用该自适应修正无迹卡尔曼滤波算法进行定位跟踪时,降低了奇异点给系统带来的影响,有效的提高了定位跟踪的精度与稳定性,扩大了机载多平台的协同作战的任务范围。 展开更多
关键词 无源定位与跟踪 无迹卡尔曼滤波算法 多平台 自适应
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部