文摘为了提高稀疏信号恢复的准确性,开展了基于自适应套索算子(Least absolute shrinkage and selection operator,LASSO)先验的稀疏贝叶斯学习(Sparse Bayesian learning,SBL)算法研究.1)在稀疏贝叶斯模型构建阶段,构造了一种新的多层贝叶斯框架,赋予信号中元素独立的LASSO先验.该先验比现有稀疏先验更有效地鼓励稀疏并且该模型中所有参数更新存在闭合解.然后在该多层贝叶斯框架的基础上提出了一种基于自适应LASSO先验的SBL算法.2)为降低提出的算法的计算复杂度,在贝叶斯推断阶段利用空间轮换变元方法对提出的算法进行改进,避免了矩阵求逆运算,使参数更新快速高效,从而提出了一种基于自适应LASSO先验的快速SBL算法.本文提出的算法的稀疏恢复性能通过实验进行了验证,分别针对不同大小测量矩阵的稀疏信号恢复以及单快拍波达方向(Direction of arrival,DOA)估计开展了实验.实验结果表明:提出基于自适应LASSO先验的SBL算法比现有算法具有更高的稀疏恢复准确度;提出的快速算法的准确度略低于提出的基于自适应LASSO先验的SBL算法,但计算复杂度明显降低.
基金supported by the National Natural Science Foundation of China(Grant No.11971291)the National Social Science Foundation of China(Grant No.19BTJ032)+1 种基金Fujian Alliance of Mathematics(Grant No.2023SXLMMS10)Scientific Research Climbing Program of Xiamen University of Technology(Grant No.XPDKT20037).