期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的舰船轮机设备多发故障信号监测
1
作者 杨双齐 《舰船科学技术》 北大核心 2023年第16期100-103,共4页
针对舰船轮机设备故障信号监测中存在的运算量大、缺少故障数据、模型训练复杂、检测效率低、准确度不高等问题,设计了基于机器学习的舰船轮机设备多发故障信号监测方法。通过多种传感器采集舰船轮机设备振动信号,经小波变换降噪后,通过... 针对舰船轮机设备故障信号监测中存在的运算量大、缺少故障数据、模型训练复杂、检测效率低、准确度不高等问题,设计了基于机器学习的舰船轮机设备多发故障信号监测方法。通过多种传感器采集舰船轮机设备振动信号,经小波变换降噪后,通过EMD经验模态分解提取舰船轮机设备振动信号特征,将其作为孤立森林算法输入进行异常信号检测,以异常信号检测结果为依据,构建决策二叉树支持向量机故障信号分类模型识别故障信号,实现舰船轮机设备多发故障信号监测,实验表明,该方法可以高效、准确地检测并识别舰船轮机设备的故障信号,而且适应性广泛,在舰船轮机设备的各种工况下,监测性能都十分良好。 展开更多
关键词 舰船轮机设备 故障信号监测 机器学习 经验模态分解 孤立森林算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部