构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替...构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。展开更多
茶芽检测识别是实现茶芽采摘自动化和智能化的基础。针对复杂背景中传统茶芽检测方法准确率低、稳定性差等问题,提出一种基于深度学习的茶芽检测方法。以YOLOv5(You Only Look Once)算法为框架,通过引入坐标注意力机制和使用RepVGG重构...茶芽检测识别是实现茶芽采摘自动化和智能化的基础。针对复杂背景中传统茶芽检测方法准确率低、稳定性差等问题,提出一种基于深度学习的茶芽检测方法。以YOLOv5(You Only Look Once)算法为框架,通过引入坐标注意力机制和使用RepVGG重构卷积块的方式改进算法,提升茶芽检测性能。结果表明,使用改进后的模型的茶芽检测准确率为86.48%,精确率为85.1%,召回率为78.41%,参数量为5500541,模型大小为11.3MB。相比于改进前的算法,该方法不仅具有更高的检测精度,还有效降低了模型的大小,可以很好地应用于复杂背景茶芽检测中,并为嵌入式设备研究提供支持和参考。展开更多
文摘构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。
文摘茶芽检测识别是实现茶芽采摘自动化和智能化的基础。针对复杂背景中传统茶芽检测方法准确率低、稳定性差等问题,提出一种基于深度学习的茶芽检测方法。以YOLOv5(You Only Look Once)算法为框架,通过引入坐标注意力机制和使用RepVGG重构卷积块的方式改进算法,提升茶芽检测性能。结果表明,使用改进后的模型的茶芽检测准确率为86.48%,精确率为85.1%,召回率为78.41%,参数量为5500541,模型大小为11.3MB。相比于改进前的算法,该方法不仅具有更高的检测精度,还有效降低了模型的大小,可以很好地应用于复杂背景茶芽检测中,并为嵌入式设备研究提供支持和参考。