在地球大气层与火星大气层中,使用自己编制的DSMC(direct si mulation Monte Carlo)源程序完成了四种飞行器(即Apollo,Orion,Mars Pathfinder以及Mars Microprobe)高超声速穿越稀薄气体时的三维绕流计算,给出了上述飞行器42个典型飞行工...在地球大气层与火星大气层中,使用自己编制的DSMC(direct si mulation Monte Carlo)源程序完成了四种飞行器(即Apollo,Orion,Mars Pathfinder以及Mars Microprobe)高超声速穿越稀薄气体时的三维绕流计算,给出了上述飞行器42个典型飞行工况(其中包括在地球大气层中,飞行高度从250 km变到90km,飞行攻角从45°变到-45°,Knudsen数从111.0变到0.0057,飞行速度从7.6km/s变到9.6km/s;在火星大气层中,飞行高度从141.8km变到80.28km,飞行攻角从45°变到0°,Knudsen数从100.0变到0.0546,飞行速度从7.47km/s变到6.908km/s)时详细气动力与气动热的数值结果,并与国外的飞行数据以及美国NASA(National Aeronautics and Space Administration)Langley研究中心发表的计算结果进行了比较,所得结果令人满意.文中采用了三种无量纲参数分别刻画这四种典型飞行器绕流流动的热力学非平衡、化学反应非平衡以及壁面热流分布的特征,这些结果对于指导空间飞行器的热防护气动设计十分有益.展开更多
Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-rang...Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.展开更多
Geometric factor is the key parameter for inversion of particle spectrum in space particle detection. Traditional geometric factor is obtained through the method of numerical calculation with the actual structure of t...Geometric factor is the key parameter for inversion of particle spectrum in space particle detection. Traditional geometric factor is obtained through the method of numerical calculation with the actual structure of the detector as the input condition. The degree of accuracy for data inversion is reduced since traditional geometric factor fails to take into account the physical process of interaction between the particle and substance as well as the influence of factors such as the particle interference between different energy channels on the measurement result. Here we propose an improved geometrical factor calculation method, the concept of which is to conduct actual structural modelling of the detector in the GEANT4 program, consider the process of interaction between the particle and substance, obtain the response function of the detector to particles of different energy channels through the method of Monte Carlo simulation, calculate the influence of contaminated particle on the geometrical factor, and finally get the geometrical factors for different energy channels of the detector. The imrpoved geometrical factor obtained through the method has carried out inversion for the data of high energy protons detector on China's FY-3 satellite, the energy spectrum after which is more in line with the power law distribution recognized by space physics. The comparison with the measured result of POES satellite indicates that the FY-3 satellite data are in good accordance with the satellite data, which shows the method may effectively improve the quality of data inversion.展开更多
In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas wa...In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.展开更多
文摘在地球大气层与火星大气层中,使用自己编制的DSMC(direct si mulation Monte Carlo)源程序完成了四种飞行器(即Apollo,Orion,Mars Pathfinder以及Mars Microprobe)高超声速穿越稀薄气体时的三维绕流计算,给出了上述飞行器42个典型飞行工况(其中包括在地球大气层中,飞行高度从250 km变到90km,飞行攻角从45°变到-45°,Knudsen数从111.0变到0.0057,飞行速度从7.6km/s变到9.6km/s;在火星大气层中,飞行高度从141.8km变到80.28km,飞行攻角从45°变到0°,Knudsen数从100.0变到0.0546,飞行速度从7.47km/s变到6.908km/s)时详细气动力与气动热的数值结果,并与国外的飞行数据以及美国NASA(National Aeronautics and Space Administration)Langley研究中心发表的计算结果进行了比较,所得结果令人满意.文中采用了三种无量纲参数分别刻画这四种典型飞行器绕流流动的热力学非平衡、化学反应非平衡以及壁面热流分布的特征,这些结果对于指导空间飞行器的热防护气动设计十分有益.
基金supported by National Natural Science Foundation of China (Grant Nos.11101276 and 91130012)the support from the Alexander von Humboldt Foundation for a research stay at the Institute of Compututional Physics,University of Stuttgart
文摘Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.
基金supported by the National Natural Science Foundation of China(Grant No.41204119)the Space Science Strategic Pioneer Program of CAS(Grant No.XDA04060804)
文摘Geometric factor is the key parameter for inversion of particle spectrum in space particle detection. Traditional geometric factor is obtained through the method of numerical calculation with the actual structure of the detector as the input condition. The degree of accuracy for data inversion is reduced since traditional geometric factor fails to take into account the physical process of interaction between the particle and substance as well as the influence of factors such as the particle interference between different energy channels on the measurement result. Here we propose an improved geometrical factor calculation method, the concept of which is to conduct actual structural modelling of the detector in the GEANT4 program, consider the process of interaction between the particle and substance, obtain the response function of the detector to particles of different energy channels through the method of Monte Carlo simulation, calculate the influence of contaminated particle on the geometrical factor, and finally get the geometrical factors for different energy channels of the detector. The imrpoved geometrical factor obtained through the method has carried out inversion for the data of high energy protons detector on China's FY-3 satellite, the energy spectrum after which is more in line with the power law distribution recognized by space physics. The comparison with the measured result of POES satellite indicates that the FY-3 satellite data are in good accordance with the satellite data, which shows the method may effectively improve the quality of data inversion.
基金supported by the National Natural Science Foundation of China(Grant Nos.41675005,91537290&41275008)the Basic Research Fund of Chinese Academy of Meteorological Sciences(Grant Nos.2016Z002&2015Z006)
文摘In recent years, locating total lightning at the VLF/LF band has become one of the most important directions in lightning detection. The Low-frequency E-field Detection Array(LFEDA) consisting of nine fast antennas was developed by the Chinese Academy of Meteorological Sciences in Guangzhou between 2014 and 2015. This paper documents the composition of the LFEDA and a lightning-locating algorithm that applies to the low-frequency electric field radiated by lightning pulse discharge events(LPDEs). Theoretical simulation and objective assessment of the accuracy and detection efficiency of LFEDA have been done using Monte Carlo simulation and artificial triggered lightning experiment, respectively. The former results show that having a station in the network with a comparatively long baseline improves both the horizontal location accuracy in the direction perpendicular to the baseline and the vertical location accuracy along the baseline. The latter results show that detection efficiencies for triggered lightning flashes and return strokes are 100% and 95%, respectively. The average planar location error for return strokes of triggered lightning flashes is 102 m. By locating LPDEs in thunderstorms, we find that LPDEs are consistent with convective regions as indicated by strong reflectivity columns, and present a reasonable distribution in the vertical direction.In addition, the LFEDA can reveal an image of lightning development through mapping the channels of lightning. Based on three-dimensional locations, the vertical propagation speed of the preliminary breakdown and the changing trend of the leader's speed in an intra-cloud and a cloud-to-ground flash are investigated. The research results show that the LFEDA has the capability for three-dimensional location of lightning, which provides a new technique for researching lightning development characteristics and thunderstorm electricity.