Microlysimeters of different sizes(5 cm 10 cm and 15 cm in length)were used extensively in the present study for the measurements of soil evapondion in site in an extremely arid area in southern Israel.All of the data...Microlysimeters of different sizes(5 cm 10 cm and 15 cm in length)were used extensively in the present study for the measurements of soil evapondion in site in an extremely arid area in southern Israel.All of the data obtained from the microlysimeters were used to evaluate two conventional eVaporation models developed by Black et al.and Ritchie,respectively.Our results indicated that the models could overestimate total cumulative evaporation by about 30% in the extremely arid environment.Reducing the power factor of the conventional model by a faCtor of 0.1 produced good agreement between the measured and simulated cumulative evaporation.Microlysimeter method proved to be a simple and accurate approach for the evaluation of soil evaporstion.展开更多
To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) eli...To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) elicited by different ambient temperatures(Ta)(5-30 ℃) were determined in the present study. Our results showed that they have a high Tb(41.6±0.1 ℃), a wide thermal neutral zone(TNZ)(20-27.5 ℃) and a relatively low BMR within the TNZ(3.37±0.17 mL O2/g·h). The EWL was nearly stable below the TNZ(0.91±0.07 mg H2O/g·h) but increased remarkably within and above the TNZ. The C was constant below the TNZ, with a minimum value of 0.14±0.01 mL O2/g·h·℃. These findings indicate that the BMR, Tb and EWL of the silky starling were all affected by Ta, especially when Ta was below 20℃ and the EWL plays an important role in thermal regulation.展开更多
The spatio-temporal pattern of the global water resource has significantly changed with climate change and intensified human activities. The regional economy and ecological environment are highly affected by terrestri...The spatio-temporal pattern of the global water resource has significantly changed with climate change and intensified human activities. The regional economy and ecological environment are highly affected by terrestrial water storage(TWS), especially in arid areas. To investigate the response relationships between TWS and changing environments(climate change and human activities) in Central Asia, we used the Gravity Recovery and Climate Experiment(GRACE) data, Climatic Research Unit(CRU) climate data and Moderate Resolution Imaging Spectroradiometer(MODIS) remote sensing data products(MOD16A2, MOD13A3 and MCD12Q1) from 2003 to 2013, as well as the slope and Pearson correlation analysis methods. Results indicate that:(1) TWS in about 77% of the study area decreased from 2003 to 2013. The total change volume of TWS is about 2915.6 × 108 m^3. The areas of decreased TWS are mainly distributed in the middle of Central Asia, while the areas of increased TWS are concentrated in the middle-altitude regions of the Kazakhstan hills and Tarim Basin.(2) TWS in about 5.91% of areas, mainly distributed in the mountain and piedmont zones, is significantly positively correlated with precipitation, while only 3.78% of areas show significant correlation between TWS and temperature. If the response time was delayed by three months, there would be a very good correlation between temperature and TWS.(3) There is a significantly positive relationship between TWS and Normalized Difference Vegetation Index(NDVI) in 13.35% of the study area.(4) The area of significantly positive correlation between TWS and evapotranspiration is about 31.87%, mainly situated in mountainous areas and northwestern Kazakhstan. The reduction of regional TWS is related to precipitation more than evaporation. Increasing farmland area may explain why some areas show increasing precipitation and decreasing evapotranspiration.(5) The influences of land use on TWS are still not very clear. This study could provide scientific data useful for the estimation of changes in TWS with climate change and human activities.展开更多
文摘Microlysimeters of different sizes(5 cm 10 cm and 15 cm in length)were used extensively in the present study for the measurements of soil evapondion in site in an extremely arid area in southern Israel.All of the data obtained from the microlysimeters were used to evaluate two conventional eVaporation models developed by Black et al.and Ritchie,respectively.Our results indicated that the models could overestimate total cumulative evaporation by about 30% in the extremely arid environment.Reducing the power factor of the conventional model by a faCtor of 0.1 produced good agreement between the measured and simulated cumulative evaporation.Microlysimeter method proved to be a simple and accurate approach for the evaluation of soil evaporstion.
基金This study was financially supported the National Natural Science Foundation of China (31070366), the Natural Science Foundation (LY13C030005) in Zhejiang Province and the Zhejiang Province 'Xinmiao' Project.
文摘To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) elicited by different ambient temperatures(Ta)(5-30 ℃) were determined in the present study. Our results showed that they have a high Tb(41.6±0.1 ℃), a wide thermal neutral zone(TNZ)(20-27.5 ℃) and a relatively low BMR within the TNZ(3.37±0.17 mL O2/g·h). The EWL was nearly stable below the TNZ(0.91±0.07 mg H2O/g·h) but increased remarkably within and above the TNZ. The C was constant below the TNZ, with a minimum value of 0.14±0.01 mL O2/g·h·℃. These findings indicate that the BMR, Tb and EWL of the silky starling were all affected by Ta, especially when Ta was below 20℃ and the EWL plays an important role in thermal regulation.
基金National Natural Science Foundation of China,No.51569027No.41371419+1 种基金International Partnership Program of the Chinese Academy of Sciences,No.131551KYSB20160002Special Institute Main Service Program of the Chinese Academy of Sciences,No.TSS-2015-014-FW-1-2
文摘The spatio-temporal pattern of the global water resource has significantly changed with climate change and intensified human activities. The regional economy and ecological environment are highly affected by terrestrial water storage(TWS), especially in arid areas. To investigate the response relationships between TWS and changing environments(climate change and human activities) in Central Asia, we used the Gravity Recovery and Climate Experiment(GRACE) data, Climatic Research Unit(CRU) climate data and Moderate Resolution Imaging Spectroradiometer(MODIS) remote sensing data products(MOD16A2, MOD13A3 and MCD12Q1) from 2003 to 2013, as well as the slope and Pearson correlation analysis methods. Results indicate that:(1) TWS in about 77% of the study area decreased from 2003 to 2013. The total change volume of TWS is about 2915.6 × 108 m^3. The areas of decreased TWS are mainly distributed in the middle of Central Asia, while the areas of increased TWS are concentrated in the middle-altitude regions of the Kazakhstan hills and Tarim Basin.(2) TWS in about 5.91% of areas, mainly distributed in the mountain and piedmont zones, is significantly positively correlated with precipitation, while only 3.78% of areas show significant correlation between TWS and temperature. If the response time was delayed by three months, there would be a very good correlation between temperature and TWS.(3) There is a significantly positive relationship between TWS and Normalized Difference Vegetation Index(NDVI) in 13.35% of the study area.(4) The area of significantly positive correlation between TWS and evapotranspiration is about 31.87%, mainly situated in mountainous areas and northwestern Kazakhstan. The reduction of regional TWS is related to precipitation more than evaporation. Increasing farmland area may explain why some areas show increasing precipitation and decreasing evapotranspiration.(5) The influences of land use on TWS are still not very clear. This study could provide scientific data useful for the estimation of changes in TWS with climate change and human activities.