In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermol...In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.展开更多
This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown co...This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation(ex-situ reactivity) using TGA(thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion significantly but also reduced the char reactivity dramatically. The curve shapes of the char reactivity with involvement of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.展开更多
The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity i...The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity in oxygen after the gasification in steam using different forms (i.e. H-form, Na-form) of Shengli brown coal. The surface area, AAEM concentration and carbon crystallite of chars were obtained to understand the change in char reactivity. It was found that not only Na concentration and carbon structure were the main factors governing the char reactivity in the atmosphere of steam and oxygen, but also they interacted each other. The presence of Na could facilitate the formation of disordering carbon structure in char, and the amorphous carbon structure would in turn affect the distribution of Na and thus its catalytic performance. The surface area and pore volume had very little relationship with the char's reactivity. Addi- tionally, the morphology of chars from different forms of coals were observed using scanning electron microscope (SEM).展开更多
Silver modified HZSM-5 (AgHZ) zeolite catalysts were prepared by ion exchange method and their catalytic properties in the l-butene cracking reaction were measured. The catalysts were characterized by infrared spec-...Silver modified HZSM-5 (AgHZ) zeolite catalysts were prepared by ion exchange method and their catalytic properties in the l-butene cracking reaction were measured. The catalysts were characterized by infrared spec- troscopy with pyridine adsorption (Py-IR), N2 adsorption and X-ray diffraction (XRD). The effects of Ag loading and steaming treatment on catalytic performances were studied. It is found that the activity ofHT_SM-5 (HZ) catalyst significantly decreases with the steaming time, whereas AgHZ catalysts show stable activity in the steaming time of 24-48 h and their activities increase with the Ag loading. When the steaming time is 24-48 h, the yield of propylene over HZ catalyst significantly decreases, whereas it is stable over AgHZ catalysts. The AgHZ catalysts with Ag loadings of 0.28%-0.43% (by mass) show similar propylene yields (-30%), which are higher than that over the AgHZ catalyst with a Ag loading of 0.55% (by mass). These results indicate that the steam-treated AgHZ catalysts with optimum Ag loadings have higher yield of propylene and are more stable than the steam- treated HZ catalyst. The regeneration stability measurement in butene cracking also shows that the AgHZ catalyst steam-treated under a suitable condition has better stability than the HZ catalyst.展开更多
基金supported by the National Natural Science Foundation of China(21173153)the National High Technology Research and Development Program of China(863 Program,2013AA065304)the Major Research Program of Science and Technology Department of Sichuan Province,China(2011GZ0035,2012FZ0008)~~
基金the financial supports from National Key Project of Scientific and Technical Supporting Programs:Enhancing oil displacement efficiency during steamfloods(fund No.2008ZX05012-001)
文摘In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.
基金Support by the Victorian State Government under its Energy Technology Innovation Strategy programme and the 12th Five-Year Plan of National Science and Technology of China(2012BAA04B02)
文摘This study was to examine the influence of reactions of char–O2and char–steam on the char reactivity evolution.A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation(ex-situ reactivity) using TGA(thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion significantly but also reduced the char reactivity dramatically. The curve shapes of the char reactivity with involvement of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.
文摘The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity in oxygen after the gasification in steam using different forms (i.e. H-form, Na-form) of Shengli brown coal. The surface area, AAEM concentration and carbon crystallite of chars were obtained to understand the change in char reactivity. It was found that not only Na concentration and carbon structure were the main factors governing the char reactivity in the atmosphere of steam and oxygen, but also they interacted each other. The presence of Na could facilitate the formation of disordering carbon structure in char, and the amorphous carbon structure would in turn affect the distribution of Na and thus its catalytic performance. The surface area and pore volume had very little relationship with the char's reactivity. Addi- tionally, the morphology of chars from different forms of coals were observed using scanning electron microscope (SEM).
基金Supported by the National Science Foundation of China(U1162129)the Science and Technology Department of Zhejiang Province(2009R50020)
文摘Silver modified HZSM-5 (AgHZ) zeolite catalysts were prepared by ion exchange method and their catalytic properties in the l-butene cracking reaction were measured. The catalysts were characterized by infrared spec- troscopy with pyridine adsorption (Py-IR), N2 adsorption and X-ray diffraction (XRD). The effects of Ag loading and steaming treatment on catalytic performances were studied. It is found that the activity ofHT_SM-5 (HZ) catalyst significantly decreases with the steaming time, whereas AgHZ catalysts show stable activity in the steaming time of 24-48 h and their activities increase with the Ag loading. When the steaming time is 24-48 h, the yield of propylene over HZ catalyst significantly decreases, whereas it is stable over AgHZ catalysts. The AgHZ catalysts with Ag loadings of 0.28%-0.43% (by mass) show similar propylene yields (-30%), which are higher than that over the AgHZ catalyst with a Ag loading of 0.55% (by mass). These results indicate that the steam-treated AgHZ catalysts with optimum Ag loadings have higher yield of propylene and are more stable than the steam- treated HZ catalyst. The regeneration stability measurement in butene cracking also shows that the AgHZ catalyst steam-treated under a suitable condition has better stability than the HZ catalyst.