In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was ...In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.展开更多
The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finit...The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.展开更多
Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of...Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.展开更多
As one kind of key lightweight components with enormous quantities and diversities, the bent tubular parts have attracted in- creasing applications in aerospace, automobile, etc. Thus, how the inevitable springback be...As one kind of key lightweight components with enormous quantities and diversities, the bent tubular parts have attracted in- creasing applications in aerospace, automobile, etc. Thus, how the inevitable springback behaves under different bending specifications should be fully addressed to efficiently achieve the precision forming of various bent tubes. Taking the medium strength thin-walled 6061-T4 Al-alloy tube as the objective, via the deformation theory of plasticity, explicit/implicit FE method and experimental approaches, we explored and clarified the nonlinear springback rules of the tubes and corresponding mechanisms in universal rotary draw bending regarding angular springback and radius growth by deliberately changing the tube diameter D and wall thickness t. The geometry dependent springback behaviors of thin-walled tube upon cold bending are thus revealed: 1) With the increasing of D, the tangent tensile strain increases and the proportional coefficient decreases, which causes the angular springback to decrease, while the radius springback increases due to the larger bending radius. 2) With the increasing of t, the tangent tensile strain decreases and the proportional coefficient increases, resulting in the increase of both angular springback and radius springback. 3) Under the same D/t, the angular springback varies little, while the radius springback increases with the larger diameter D. 4) The D/t can be used as a reasonable nondimensional index to evaluate the springback angle; as to the radius growth, the individual effects of the D and t should be considered. 5) The verification of the above results was conducted by experiments and analytical analysis.展开更多
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.
基金Projects(50575184,50975235) supported by the National Natural Science Foundation of ChinaProject(YF07057) supported by Science and Technology Development Program of Xi'an City,Shaanxi Province,China+1 种基金Project(NPU-FFR-200809) supported by Foundation for Fundamental Research of Northwestern Polytechnical University,ChinaProject(08-3) supported by State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,China
文摘The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.
基金Projects (50905144, 50875216) supported by the National Natural Science Foundation of ChinaProject (09-10) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, ChinaProject (JC201028) supported by the Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.
基金supported by the National Natural Science Foundation of China (Grant No. 50905144)Program for New Century Excellent Talentsin University+2 种基金the fund of the State Key Laboratory of Solidification Processing in NWPUthe Natural Science Basic Research Plan in Shaanxi Province (Grant No. 2011JQ6004)the 111 Project (Grant No.B08040)
文摘As one kind of key lightweight components with enormous quantities and diversities, the bent tubular parts have attracted in- creasing applications in aerospace, automobile, etc. Thus, how the inevitable springback behaves under different bending specifications should be fully addressed to efficiently achieve the precision forming of various bent tubes. Taking the medium strength thin-walled 6061-T4 Al-alloy tube as the objective, via the deformation theory of plasticity, explicit/implicit FE method and experimental approaches, we explored and clarified the nonlinear springback rules of the tubes and corresponding mechanisms in universal rotary draw bending regarding angular springback and radius growth by deliberately changing the tube diameter D and wall thickness t. The geometry dependent springback behaviors of thin-walled tube upon cold bending are thus revealed: 1) With the increasing of D, the tangent tensile strain increases and the proportional coefficient decreases, which causes the angular springback to decrease, while the radius springback increases due to the larger bending radius. 2) With the increasing of t, the tangent tensile strain decreases and the proportional coefficient increases, resulting in the increase of both angular springback and radius springback. 3) Under the same D/t, the angular springback varies little, while the radius springback increases with the larger diameter D. 4) The D/t can be used as a reasonable nondimensional index to evaluate the springback angle; as to the radius growth, the individual effects of the D and t should be considered. 5) The verification of the above results was conducted by experiments and analytical analysis.