Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high...Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.展开更多
A lithium-assisted approach has been developed for the exfoliation of pristine graphite, which allows the large-scale preparation of few-layer graphene nanosheets. The process involves an unexpected physical insertion...A lithium-assisted approach has been developed for the exfoliation of pristine graphite, which allows the large-scale preparation of few-layer graphene nanosheets. The process involves an unexpected physical insertion and exfoliafion, and the graphene nanosheets prepared by this method reveal undisturbed sp2-hybridized structures. A possible two-step mechanism, which involves the negative charge being trapped around the edges of the graphite layers and a subsequent lithiation process, is proposed to explain the insertion of lithium inside the graphite interlayers. If necessary, the present exfoliation can be repeated and thinner (single or 2-3 layer) graphene can be achieved on a large scale. This simple process provides an efficient process for the exfoliation of pristine graphite, which might promote the future applications of graphene.展开更多
Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optim...Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field.The in-plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs.The effective thickness of SLGSs is obtained by the MD simulations for the thermal vibration of SLGSs through the natural frequency.The root-mean-squared (RMS) amplitudes for SLGSs of differing temperatures and boundary conditions are calculated by the MD,and are compared with the results calculated by the thin plate model together with the law of equi-partition of energy.At the center of SLGSs,the thin plate theory can predict the MD results reasonably well.For the difference of bonding structure of the edge atoms,the deviation between the MD results and plate theory becomes more readily apparent near the edges of SLGSs.展开更多
文摘Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.
基金This work was supported by the National Natural Science Foundation of China (No. 51222104) and the Fundamental Research Funds for the Central Universities.
文摘A lithium-assisted approach has been developed for the exfoliation of pristine graphite, which allows the large-scale preparation of few-layer graphene nanosheets. The process involves an unexpected physical insertion and exfoliafion, and the graphene nanosheets prepared by this method reveal undisturbed sp2-hybridized structures. A possible two-step mechanism, which involves the negative charge being trapped around the edges of the graphite layers and a subsequent lithiation process, is proposed to explain the insertion of lithium inside the graphite interlayers. If necessary, the present exfoliation can be repeated and thinner (single or 2-3 layer) graphene can be achieved on a large scale. This simple process provides an efficient process for the exfoliation of pristine graphite, which might promote the future applications of graphene.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072108)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201028)+1 种基金Program for New Century Excellent Talents in University (Grant No. NCET-11-0832)the Foundation of Nanjing University Aeronautics and Astronautics
文摘Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field.The in-plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs.The effective thickness of SLGSs is obtained by the MD simulations for the thermal vibration of SLGSs through the natural frequency.The root-mean-squared (RMS) amplitudes for SLGSs of differing temperatures and boundary conditions are calculated by the MD,and are compared with the results calculated by the thin plate model together with the law of equi-partition of energy.At the center of SLGSs,the thin plate theory can predict the MD results reasonably well.For the difference of bonding structure of the edge atoms,the deviation between the MD results and plate theory becomes more readily apparent near the edges of SLGSs.