Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equat...Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.展开更多
This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guang...This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guangdong and Hainan. From the 1950s to 1986, the annual rate of soil erosion increased by 3.4%. From 1986 to 1996 and from 1996 to 2000, the annual rates of soil erosion decreased by 2.0% and 0.32%, respectively. Field surveys showed that from 2000 to 2005, the area of soil and water loss decreased annually by 1.2%. This decrease was a result of large-scale erosion control activities across China. Although the eroded soil has been restored, the restoration process is very slow and full restoration will take a long time. Our report suggests that controlling soil and water loss is a challenging task, and additional measures must be taken to effectively control the soil erosion in the red soil region.展开更多
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change Between 2000 and 2010(No.STSN-04-01)
文摘Using Geographic Information System(GIS), based on wind speed, precipitation, topographic, soil, vegetation coverage and land use data of Inner Mongolia between 2001 and 2010, we applied the revised wind erosion equation(RWEQ) model to simulate wind erosion intensity. The results showed that an area of approximately 47.8 × 10~4 km^2 experienced wind erosion in 2010, 23.2% of this erosion could be rated as severe, and 46.0% as moderate. Both the area and the intensity of wind erosion had decreased from 2001 to 2010, the wind erosion area reduced 10.1%, and wind erosion intensity decreased by 29.4%. Precipitation, wind speed, population size and urbanization in rural areas, and gross domestic product of primary industry(GDP1) were the main factors influencing wind erosion. Overall, these factors accounted for 88.8% of the wind erosion. These results indicated that the decrease in wind erosion over the past decade related to the increase in precipitation and the decrease in the number of windy days, while modest urban development and optimization of the economic structure might partially reduced the level of ecological pressure, highlighting the importance of human activities in controlling wind erosion.
基金funded by the "973" Program of China (2007CB407206)the ISSCAS Innovation Program (ISSASIP0602)the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-438)
文摘This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guangdong and Hainan. From the 1950s to 1986, the annual rate of soil erosion increased by 3.4%. From 1986 to 1996 and from 1996 to 2000, the annual rates of soil erosion decreased by 2.0% and 0.32%, respectively. Field surveys showed that from 2000 to 2005, the area of soil and water loss decreased annually by 1.2%. This decrease was a result of large-scale erosion control activities across China. Although the eroded soil has been restored, the restoration process is very slow and full restoration will take a long time. Our report suggests that controlling soil and water loss is a challenging task, and additional measures must be taken to effectively control the soil erosion in the red soil region.