为解决由于现有深度迁移学习无法有效匹配实际农业场景部署应用,而导致大规模、多类别、细粒度的病虫害辨识准确低、泛化鲁棒差等问题,该研究利用农业物联网中多种设备终端获取12.2万张181类病虫害图像,并提出了基于多流概率融合网络MPF...为解决由于现有深度迁移学习无法有效匹配实际农业场景部署应用,而导致大规模、多类别、细粒度的病虫害辨识准确低、泛化鲁棒差等问题,该研究利用农业物联网中多种设备终端获取12.2万张181类病虫害图像,并提出了基于多流概率融合网络MPFN(Multi-stream Gaussian Probability Fusion Network)的病虫害细粒度识别模型。该模型设计多流深度网络并行的细粒度特征提取层,挖掘可区分细微差异的不同级别局部特征表达,经过局部描述特征聚合层和高斯概率融合层的整合优化,发挥多模型融合信息互补及置信耦合的优势,既可以有效区分不同类病虫害的种间微小差异,又可容忍同类病虫害种内明显差异干扰。对比试验表明,该研究MPFN模型对各类病虫害的平均识别准确率达到93.18%,性能优于其他粗粒度及细粒度深度学习方法;而平均单张处理时间为61ms,能够满足农业生产实践中物联网各终端病虫害细粒度图像识别需求,可为智能化病虫害预警防控提供技术应用参考,进而为保障农作物产量和品质安全提供基础。展开更多
文摘为解决由于现有深度迁移学习无法有效匹配实际农业场景部署应用,而导致大规模、多类别、细粒度的病虫害辨识准确低、泛化鲁棒差等问题,该研究利用农业物联网中多种设备终端获取12.2万张181类病虫害图像,并提出了基于多流概率融合网络MPFN(Multi-stream Gaussian Probability Fusion Network)的病虫害细粒度识别模型。该模型设计多流深度网络并行的细粒度特征提取层,挖掘可区分细微差异的不同级别局部特征表达,经过局部描述特征聚合层和高斯概率融合层的整合优化,发挥多模型融合信息互补及置信耦合的优势,既可以有效区分不同类病虫害的种间微小差异,又可容忍同类病虫害种内明显差异干扰。对比试验表明,该研究MPFN模型对各类病虫害的平均识别准确率达到93.18%,性能优于其他粗粒度及细粒度深度学习方法;而平均单张处理时间为61ms,能够满足农业生产实践中物联网各终端病虫害细粒度图像识别需求,可为智能化病虫害预警防控提供技术应用参考,进而为保障农作物产量和品质安全提供基础。