期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
特征增强和双线性特征向量融合的移动端工业货箱文本检测
1
作者 胡海洋 厉泽品 李忠金 《电信科学》 2022年第7期75-87,共13页
在实际工业环境下,光线昏暗、文本不规整、设备有限等因素,使得文本检测成为一项具有挑战性的任务。针对此问题,设计了一种基于双线性操作的特征向量融合模块,并联合特征增强与半卷积组成轻量级文本检测网络RGFFD(ResNet18+GhostModule... 在实际工业环境下,光线昏暗、文本不规整、设备有限等因素,使得文本检测成为一项具有挑战性的任务。针对此问题,设计了一种基于双线性操作的特征向量融合模块,并联合特征增强与半卷积组成轻量级文本检测网络RGFFD(ResNet18+GhostModule+特征金字塔增强模块(feature pyramid enhancement module,FPEM)+特征融合模块(feature fusion module,FFM)+可微分二值化(differenttiable binarization,DB))。其中,Ghost模块内嵌特征增强模块,提升特征提取能力,双线性特征向量融合模块融合多尺度信息,添加自适应阈值分割算法提高DB模块分割能力。在实际工厂环境下,采用嵌入式设备UP2 board对货箱编号进行文本检测,RGFFD检测速度达到6.5 f/s。同时在公共数据集ICDAR2015、Total-text上检测速度分别达到39.6 f/s和49.6 f/s,在自定义数据集上准确率达到88.9%,检测速度为30.7 f/s。 展开更多
关键词 文本检测 半卷积 特征向量融合 特征增强 特征融合
下载PDF
基于transformer自适应特征向量融合的图像分类 被引量:1
2
作者 胡义 黄勃淳 李凡 《光电子.激光》 CAS CSCD 北大核心 2023年第6期602-609,共8页
针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利... 针对目前基于transformer的图像分类模型直接应用在小数据集上性能较差的问题,本文提出了transformer自适应特征向量融合网络,该网络在特征提取器中将不同阶段的特征进行融合,减少特征信息丢失的同时获得更多不同感受野下的信息,同时利用最大池化来去除特征中的冗余信息,从而使提取的特征更具有判别性。此外,为了充分利用图像的各级特征信息来进行分类预测,本文将网络各阶段产生的特征向量进行融合,使融合后的特征向量更具有表征能力,从而减少网络对大数据集的依赖,使网络在小数据集中也能获得很好的性能。实验表明,本文提出的算法在数据集Mini-ImageNet-100、CIFAR-100和ImageNet-1k上的TOP-1准确率分别达到了74.22%、85.86%和81.4%。在没有增加计算量的情况下,在baseline上分别提高了6.0%、3.0%和0.1%,且参数量减少了18.3%。本文代码开源在“https://github.com/xhutongxue/afvf”。 展开更多
关键词 TRANSFORMER 图像分类 自适应特征向量融合 卷积神经网络(CNN) 模式识别
原文传递
基于BERT-LDA和K-means聚类的绘画作品价值评估指标体系构建
3
作者 李天义 刘勤明 《软件工程》 2024年第1期68-73,共6页
针对目前绘画领域缺乏标准的价值评估指标体系,提出了基于BERT-LDA和K-means聚类的绘画作品价值要素挖掘方法。运用超平面法对绘画文献进行了停用词筛选,基于BERT-LDA模型构建了包含文本语义信息的融合特征向量,运用K-means算法对融合... 针对目前绘画领域缺乏标准的价值评估指标体系,提出了基于BERT-LDA和K-means聚类的绘画作品价值要素挖掘方法。运用超平面法对绘画文献进行了停用词筛选,基于BERT-LDA模型构建了包含文本语义信息的融合特征向量,运用K-means算法对融合特征向量进行降维可视化,随之构建了绘画作品价值评估指标体系。结果表明,基于BERT-LDA模型和K-means算法识别的主题及主题词相比传统LDA模型的查准率、查全率和F值分别提升了28.5%、10%和21.5%。通过随机森林等算法对指标体系进行验证,验证了构建的绘画作品价值评估指标体系的科学性。 展开更多
关键词 BERT-LDA 融合特征向量 K-MEANS聚类 绘画 指标体系
下载PDF
基于多基元特征向量融合的机载LiDAR点云分类 被引量:23
4
作者 胡海瑛 惠振阳 李娜 《中国激光》 EI CAS CSCD 北大核心 2020年第8期229-239,共11页
点云分类是机载LiDAR点云应用于城市建模、道路提取等的重要阶段。虽然点云分类的方法有很多,但依然存在如多维特征向量信息冗余、复杂场景下点云分类精度不高等问题。针对这些问题,提出一种基于多基元特征向量融合的点云分类方法。该... 点云分类是机载LiDAR点云应用于城市建模、道路提取等的重要阶段。虽然点云分类的方法有很多,但依然存在如多维特征向量信息冗余、复杂场景下点云分类精度不高等问题。针对这些问题,提出一种基于多基元特征向量融合的点云分类方法。该方法分别基于点基元和对象基元提取特征向量,并结合色彩信息,利用随机森林对点云数据进行分类。实验结果表明,所提的多基元分类方法相较于单基元分类方法能够获得更高的分类精度。为了进一步分析随机森林用于点云分类的有效性,分别使用支持向量机(SVM)以及反向传播(BP)神经网络进行对比分析。实验结果表明,随机森林方法所获得的三组点云分类结果在召回率以及F1得分两个评价指标中均高于另外两种方法。 展开更多
关键词 遥感 机载LIDAR 点云分类 多基元特征向量融合 随机森林
原文传递
Novel feature fusion method for speech emotion recognition based on multiple kernel learning
5
作者 金赟 宋鹏 +1 位作者 郑文明 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期129-133,共5页
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl... In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 speech emotion recognition multiple kemellearning feature fusion support vector machine
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
6
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部