Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperatu...Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperature,using a servo-controlled rheology testing machine.Given our short-term experimental test results,we confirmed deviatoric creep stress levels of sandstone.Multiple deviatoric stress levels were applied in steps to each sample.Each deviatoric stress level before the final failed deviatoric stress was maintained for 48 h or longer.Time-dependent variations of axial strains of sandstone samples are discussed and evaluated.During the creep tests,complete tertiary creep curves of sandstone were observed under failed deviatoric stress levels with different confining pressures.Slices of coal in sandstone samples can lead to distinct tertiary creep deformation failure.展开更多
In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the e...In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the experimental results,a power exponent function was used to model the creep degree of these high-performance concretes(HPCs) for structural numerical analysis,and two series parameters of this function for the HPCs were given with the optimum method of evolution program.The experimental data were compared with CEB-FIP 90 and ACI 92 models.Results show that the two code models both overestimate the creep degree of two HPCs,so it is recommended that the power exponent function should be used for the creep analysis of bridge structure.展开更多
基金Projects 50709008 and 50539110 are supported by the National Natural Science Foundation of China.
文摘Based on laboratory results of time-dependent mechanical behavior tests,we investigated short-term and mechanical creep behavior of sandstone,observed in conventional triaxial compression experiments at room temperature,using a servo-controlled rheology testing machine.Given our short-term experimental test results,we confirmed deviatoric creep stress levels of sandstone.Multiple deviatoric stress levels were applied in steps to each sample.Each deviatoric stress level before the final failed deviatoric stress was maintained for 48 h or longer.Time-dependent variations of axial strains of sandstone samples are discussed and evaluated.During the creep tests,complete tertiary creep curves of sandstone were observed under failed deviatoric stress levels with different confining pressures.Slices of coal in sandstone samples can lead to distinct tertiary creep deformation failure.
文摘In order to investigate the compression creep of two kinds of high-performance concrete mixtures used for prestressed members in a bridge,an experimental test under laboratory conditions was carried out.Based on the experimental results,a power exponent function was used to model the creep degree of these high-performance concretes(HPCs) for structural numerical analysis,and two series parameters of this function for the HPCs were given with the optimum method of evolution program.The experimental data were compared with CEB-FIP 90 and ACI 92 models.Results show that the two code models both overestimate the creep degree of two HPCs,so it is recommended that the power exponent function should be used for the creep analysis of bridge structure.