A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After anal...A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After analyzing the loop gain's expression, which illustrates the method of selecting suitable frequency compensation for the control loop,a novel pole-zero tracking frequency compensation is proposed. Based on theoretical analysis, a DC-DC buck converter with high stability is designed with 0.5μm-CMOS technology. The simulated results reveal that the stability of the converter is independent of the load current and the input voltage. Moreover,the converter provides a full load transient response setting time of less than 5μs and overshoots and undershoots of less than 30mV.展开更多
In order to filter signal effectively according to selective center frequency, a voltage-controlled dynamic band-pass filter with gain compensation was designed based on voltage-controlled gain wideband amplifier VCA8...In order to filter signal effectively according to selective center frequency, a voltage-controlled dynamic band-pass filter with gain compensation was designed based on voltage-controlled gain wideband amplifier VCA810. The transfer function of the filter was analyzed and gain compensation voltages were given through tests; besides, a system was designed, including the gain compensation circuit and the control voltage circuit, etc. Center frequency will change from 1 kHz to 20 kHz according to control voltage on condition that bandwidth of the filter remains constant. The designed system has the advantages of simple structure, low noise, stable performance and convenient adjustment.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
This paper presents a three-stage CMOS operational amplifier (opamp) that combines accuracy with stability for a wide range of capacitive loads. A so-called quenching capacitor is added to a multipath nested Miller ...This paper presents a three-stage CMOS operational amplifier (opamp) that combines accuracy with stability for a wide range of capacitive loads. A so-called quenching capacitor is added to a multipath nested Miller compensation (MNMC) topology to obtain stability for a wide range of capacitive loads. Theoretical analysis and mathematical formulas are provided to prove the improvement in stability. A prototype of this frequency compen- sation scheme is implemented in a 0.7μm CMOS process. Measurement′s show that the amplifier can drive capaci- tive loads ranging from 100pF to 100/μF with a gain of 90dB and a minimum phase margin of 26°. The amplifier has a unity-gain bandwidth of 1MHz for a 100pF capacitive load. It employs a quenching capacitance of 18pF.展开更多
The control of the stability of the filament tension is one of the crucial techniques ensuring the component quality of the composite materials. The open-loop tension control system, with industrial control computer a...The control of the stability of the filament tension is one of the crucial techniques ensuring the component quality of the composite materials. The open-loop tension control system, with industrial control computer as the core, magnetic particle clutch as the actuator, equipped with compensation technique is researched and manufactured. It can assure the tension control stability of the yarn in filament winding process and increase the control precision of the whole system.展开更多
A complete model of switch-mode plasma cutting power supply and its simulation are developed. The full bridge isolated pulse width modulation (PWM) buck converter in continuous conduction mode (CCM) for high watt plas...A complete model of switch-mode plasma cutting power supply and its simulation are developed. The full bridge isolated pulse width modulation (PWM) buck converter in continuous conduction mode (CCM) for high watt plasma power supply is approached. Reduced ripple current and improved power factor are achieved in the plasma power supply. With a PID control strategy, circuit responses become more stable and faster with low overshoot during load and current changing. The converter achieved high efficiency under 3 to 15kW load conditions.展开更多
This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stabil...This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.展开更多
This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator...This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.展开更多
The modular multilevel converter (MMC) is a highly modular, easy to expand; the output voltage waveform is good, especially suitable for application in high voltage power system. This article first introduces the ci...The modular multilevel converter (MMC) is a highly modular, easy to expand; the output voltage waveform is good, especially suitable for application in high voltage power system. This article first introduces the circuit topology and principle of MMC, and the main technical characteristics of MMC. And according to the relationship between the drop power voltage and the load power factor, proposed three working modes of the minimum energy compensation strategy. It is shown that MMC has good application prospect in future medium or high- voltage high power applications, especially be one of candidates for HVDC system application.展开更多
As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power trans...As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.展开更多
Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnect...Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.展开更多
文摘A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After analyzing the loop gain's expression, which illustrates the method of selecting suitable frequency compensation for the control loop,a novel pole-zero tracking frequency compensation is proposed. Based on theoretical analysis, a DC-DC buck converter with high stability is designed with 0.5μm-CMOS technology. The simulated results reveal that the stability of the converter is independent of the load current and the input voltage. Moreover,the converter provides a full load transient response setting time of less than 5μs and overshoots and undershoots of less than 30mV.
文摘In order to filter signal effectively according to selective center frequency, a voltage-controlled dynamic band-pass filter with gain compensation was designed based on voltage-controlled gain wideband amplifier VCA810. The transfer function of the filter was analyzed and gain compensation voltages were given through tests; besides, a system was designed, including the gain compensation circuit and the control voltage circuit, etc. Center frequency will change from 1 kHz to 20 kHz according to control voltage on condition that bandwidth of the filter remains constant. The designed system has the advantages of simple structure, low noise, stable performance and convenient adjustment.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
文摘This paper presents a three-stage CMOS operational amplifier (opamp) that combines accuracy with stability for a wide range of capacitive loads. A so-called quenching capacitor is added to a multipath nested Miller compensation (MNMC) topology to obtain stability for a wide range of capacitive loads. Theoretical analysis and mathematical formulas are provided to prove the improvement in stability. A prototype of this frequency compen- sation scheme is implemented in a 0.7μm CMOS process. Measurement′s show that the amplifier can drive capaci- tive loads ranging from 100pF to 100/μF with a gain of 90dB and a minimum phase margin of 26°. The amplifier has a unity-gain bandwidth of 1MHz for a 100pF capacitive load. It employs a quenching capacitance of 18pF.
文摘The control of the stability of the filament tension is one of the crucial techniques ensuring the component quality of the composite materials. The open-loop tension control system, with industrial control computer as the core, magnetic particle clutch as the actuator, equipped with compensation technique is researched and manufactured. It can assure the tension control stability of the yarn in filament winding process and increase the control precision of the whole system.
文摘A complete model of switch-mode plasma cutting power supply and its simulation are developed. The full bridge isolated pulse width modulation (PWM) buck converter in continuous conduction mode (CCM) for high watt plasma power supply is approached. Reduced ripple current and improved power factor are achieved in the plasma power supply. With a PID control strategy, circuit responses become more stable and faster with low overshoot during load and current changing. The converter achieved high efficiency under 3 to 15kW load conditions.
文摘This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.
文摘This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.
文摘The modular multilevel converter (MMC) is a highly modular, easy to expand; the output voltage waveform is good, especially suitable for application in high voltage power system. This article first introduces the circuit topology and principle of MMC, and the main technical characteristics of MMC. And according to the relationship between the drop power voltage and the load power factor, proposed three working modes of the minimum energy compensation strategy. It is shown that MMC has good application prospect in future medium or high- voltage high power applications, especially be one of candidates for HVDC system application.
文摘As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.
文摘Power interconnections are becoming increasingly important in various parts of the world, as incentives for power exchange between countries are growing. A current example is that the Baltic Energy Market Interconnection Plan is launched by the European Council. For a variety of reasons, it is desirable to keep transmission corridors as slender as possible, i.e. keeping the number of lines as limited as possible, while still keeping adequate stability and power transmission capacity over the corridor. This is true, no matter whether it concerns a green-field project, or if it is a question of expanding an existing transmission corridor into higher power transmission capability. To achieve this, FACTS (flexible AC transmission systems), based on state of the art high power electronics, is a highly useful option, from technical, economical and environmental points of view, to increase the utilization and stability of a transmission system or intertie. The paper presents salient design features as well as benefits of recently installed FACTS devices, more specifically SVC (static var compensators) and series capacitors, for enabling or improving cross-border as well as interregional power transfer in a cost-effective and environmentally friendly way.