期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
补给水类型对煤层气井产水量的控制作用及开发对策 被引量:1
1
作者 杜丰丰 倪小明 +2 位作者 张亚飞 刘玉茹 王文升 《煤田地质与勘探》 EI CAS CSCD 北大核心 2023年第6期74-84,共11页
外来水补给导致煤层气井产水量高,影响了煤层内压力传播的有效性,最终影响产气量。为了查明不同补给水类型对煤层气井产水量的影响及产水/产气特征,以寿阳区块25口煤层气井勘探开发资料为基础,阐述了补给水类型划分参数获取的一般方法,... 外来水补给导致煤层气井产水量高,影响了煤层内压力传播的有效性,最终影响产气量。为了查明不同补给水类型对煤层气井产水量的影响及产水/产气特征,以寿阳区块25口煤层气井勘探开发资料为基础,阐述了补给水类型划分参数获取的一般方法,提出了“阶梯法”的补给水类型划分方法,划分了补给水类型。分析了不同补给水类型对煤层气井产水量的控制作用和产水/产气曲线特征,并提出相应的开发对策。结果表明:煤层气井补给水类型可以划分为地表水补给、围岩水补给、无补给等三类,其中围岩水补给分为断层沟通型、突破隔层型、侧向补给型。寿阳的中、高产水块段主要分布在北部、西南部和南部;北部煤层埋藏浅,地表水是煤层气井外来水的主要补给源;西南部,围岩水补给-断层沟通型是煤层气井高产水的主控因素;中部、南部,围岩水补给-突破隔层型和侧向补给是煤层气井高产水的主控因素。最后,以柿庄南区块为例,验证了本文划分方法的可靠性,并提出不同补给水类型下的开发对策:地表水补给区,一般含气量较低,煤层气井一般表现为产气量小产水量大,需慎重布井;侧向补给区,产水量大,布井时避开径流区;断层沟通型补给区,产水量大、产气不稳定,建议不布井;突破隔层型补给区,压裂参数优化、井网协同排水降压是实现较高产气量的关键;无补给区,排水降压容易,优化压裂和排采工艺是煤层气高产的重要保障。多种补给水类型叠加区,开发难度大,布井需谨慎。 展开更多
关键词 补给水类型 煤层气 高产 动力场 控制因素
下载PDF
Impact of Land Use Change on Groundwater Recharge in Guishui River Basin,China 被引量:5
2
作者 PAN Yun GONG Huili +2 位作者 ZHOU Demin LI Xiaojuan NAKAGOSHI Nobukazu 《Chinese Geographical Science》 SCIE CSCD 2011年第6期734-743,共10页
It is important to understand how land use change impacts groundwater recharge, especially for regions that are undergoing rapid urbanization and there is limited surface water. In this study, the hydrological process... It is important to understand how land use change impacts groundwater recharge, especially for regions that are undergoing rapid urbanization and there is limited surface water. In this study, the hydrological processes and re- charge ability of various land use types in Guishui River Basin, China (in Beijing Municipality) were analyzed. The impact of land use change was investigated based on water balance modeling, WetSpass and GIS. The results indicate that groundwater recharge accounts for only 21.16% of the precipitation, while 72.54% is lost in the form of evapotranspiration. The annual-lumped groundwater recharge rate decreases in the order of cropland, grassland, urban land, and forest. Land use change has resulted in a decrease of 4 x 106 m3 of yearly groundwater recharge in the study area, with a spatially averaged rate of 100.48 mm/yr and 98.41 mm/yr in 1980 and 2005, respectively. This variation has primarily come from an increase of urban area and rural settlements, as well as a decrease of cropland. 展开更多
关键词 groundwater recharge land use change soil water balance hydrological processes
下载PDF
Distributed Estimation and Analysis of Precipitation Recharge Coefficient in Strongly-exploited Beijing Plain Area, China
3
作者 PAN Yun GONG Huili +2 位作者 SUN Ying WANG Xinjuan DING Fei 《Chinese Geographical Science》 SCIE CSCD 2017年第1期88-96,共9页
The precipitation recharge coefficient(PRC), representing the amount of groundwater recharge from precipitation, is an important parameter for groundwater resources evaluation and numerical simulation. It was usually ... The precipitation recharge coefficient(PRC), representing the amount of groundwater recharge from precipitation, is an important parameter for groundwater resources evaluation and numerical simulation. It was usually obtained from empirical knowledge and site experiments in the 1980 s. However, the environmental settings have been greatly modified from that time due to land use change and groundwater over-pumping, especially in the Beijing plain area(BPA). This paper aims to estimate and analyze PRC of BPA with the distributed hydrological model and GIS for the year 2011 with similar annual precipitation as long-term mean. It is found that the recharge from vertical(precipitation + irrigation) and precipitation is 291.0 mm/yr and 233.7 mm/yr, respectively, which accounts for 38.6% and 36.6% of corresponding input water. The regional mean PRC is 0.366, which is a little different from the traditional map. However, it has a spatial variation ranging from –7.0% to 17.5% for various sub-regions. Since the vadose zone is now much thicker than the evaporation extinction depth, the land cover is regarded as the major dynamic factor that causes the variation of PRC in this area due to the difference of evapotranspiration rates. It is suggested that the negative impact of reforestation on groundwater quantity within BPA should be well investigated, because the PRC beneath forestland is the smallest among all land cover types. 展开更多
关键词 groundwater recharge distributed hydrological model land cover geographic information systems
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部