An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow...An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.展开更多
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.展开更多
Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image process...Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image processing was carried out on this image and the gap between the tool and workpiece was calculated. The gap measurement was sent to motion controlling card to make the tool approach to the surface of workpiece. These steps were repeated until the gap is zero, which means that tool setting was finished. Moreover, a reliability verification test was conducted. Results indicated that the precision of tool setting is satisfactory.展开更多
The commonly used oxide-supported metal catalysts are usually prepared in aqueous phase,which then often need to undergo calcination before usage.Therefore,the surface hydration and dehydration of oxide supports are c...The commonly used oxide-supported metal catalysts are usually prepared in aqueous phase,which then often need to undergo calcination before usage.Therefore,the surface hydration and dehydration of oxide supports are critical for the realistic modeling of supported metal catalysts.In this work,by ab initio molecular dynamics(AIMD)simulations,the initial anhydrous monoclinic ZrO_(2)(111)surfaces are evaluated within explicit solvents in aqueous phase at mild temperatures.During the simulations,all the two-fold-coordinated O sites will soon be protonated to form the acidic hydroxyls(HO_(L)),remaining the basic hydroxyls(HO^(∗))on Zr.The basic hydroxyls(HO^(∗))can easily diffuse on surfaces via the active proton exchange with the undissociated adsorption water(H_(2)O^(∗)).Within the temperatures ranging from 273 K to 373 K,in aqueous phase a certain representative equilibrium hydrated m-ZrO_(2)(¯111)surface is obtained with the coverage(θ)of 0.75 on surface Zr atoms.Later,free energies on the stepwise surface water desorption are calculated by density functional theory to mimic the surface dehydration under the mild calcination temperatures lower than 800 K.By obtaining the phase diagrams of surface dehydration,the representative partially hydrated m-ZrO_(2)(111)surfaces(0.25≤θ<0.75)at various calcination temperatures are illustrated.These hydrated m-ZrO_(2)(111)surfaces can be crucial and readily applied for more realistic modeling of ZrO_(2) catalysts and ZrO_(2)-supported metal catalysts.展开更多
In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a s...In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a short-working-distance underwater imaging system is proposed based on camera array. A multi-view calibration and rectification method is developed. A look-up table(LUT) method and a multi-resolution spline(MRS) method are applied to stitch array images real-time and seamlessly.Experiments both in the air and in the water are conducted. Strength and weakness of the LUT and MRS methods are discussed.Based on the results, the effectiveness in surface detection of underwater structures is verified.展开更多
基金Project(51171211) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0837) supported by the Chinese Ministry of Education's Supportive Program for New Century Excellent Talents in UniversitiesProject(2006BAE03B03) supported by the Chinese National Science and Technology Supportive Program
文摘An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.
基金supported by the National Basic Research Program of China(973 Program,2013CB933102)the National Natural Science Foundation of China(21273178,21573180,91545204)Xiamen-Zhuoyue Biomass Energy Co.Ltd~~
文摘Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
基金Supported by National Natural Science Foundation of China (No. 50935003)
文摘Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image processing was carried out on this image and the gap between the tool and workpiece was calculated. The gap measurement was sent to motion controlling card to make the tool approach to the surface of workpiece. These steps were repeated until the gap is zero, which means that tool setting was finished. Moreover, a reliability verification test was conducted. Results indicated that the precision of tool setting is satisfactory.
基金This work was supported by the National Natural Science Foundation of China(No.22022504,No.22003022)of ChinaNatural Science Foundation of Guangdong,China(No.2021A1515010213,No.2021A1515110406)+2 种基金Guangdong“Pearl River”Talent Plan(No.2019QN01L353)Higher Education Innovation Strong School Project of Guangdong Province of China(No.2020KTSCX122)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002).Most calculations are performed on the CHEM Highperformance Computing Cluster(CHEM-HPC)located at the Department of Chemistry,Southern University of Science and Technology(SUSTech).The computational resources are also supported by the Center for Computational Science and Engineering at SUSTech.
文摘The commonly used oxide-supported metal catalysts are usually prepared in aqueous phase,which then often need to undergo calcination before usage.Therefore,the surface hydration and dehydration of oxide supports are critical for the realistic modeling of supported metal catalysts.In this work,by ab initio molecular dynamics(AIMD)simulations,the initial anhydrous monoclinic ZrO_(2)(111)surfaces are evaluated within explicit solvents in aqueous phase at mild temperatures.During the simulations,all the two-fold-coordinated O sites will soon be protonated to form the acidic hydroxyls(HO_(L)),remaining the basic hydroxyls(HO^(∗))on Zr.The basic hydroxyls(HO^(∗))can easily diffuse on surfaces via the active proton exchange with the undissociated adsorption water(H_(2)O^(∗)).Within the temperatures ranging from 273 K to 373 K,in aqueous phase a certain representative equilibrium hydrated m-ZrO_(2)(¯111)surface is obtained with the coverage(θ)of 0.75 on surface Zr atoms.Later,free energies on the stepwise surface water desorption are calculated by density functional theory to mimic the surface dehydration under the mild calcination temperatures lower than 800 K.By obtaining the phase diagrams of surface dehydration,the representative partially hydrated m-ZrO_(2)(111)surfaces(0.25≤θ<0.75)at various calcination temperatures are illustrated.These hydrated m-ZrO_(2)(111)surfaces can be crucial and readily applied for more realistic modeling of ZrO_(2) catalysts and ZrO_(2)-supported metal catalysts.
基金supported by the National Key Technology R&D Program(Grant No.2014BAK11B04)the National Natural Science Foundation of China(Grant Nos.11272089,11327201,11532005&11602056)
文摘In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a short-working-distance underwater imaging system is proposed based on camera array. A multi-view calibration and rectification method is developed. A look-up table(LUT) method and a multi-resolution spline(MRS) method are applied to stitch array images real-time and seamlessly.Experiments both in the air and in the water are conducted. Strength and weakness of the LUT and MRS methods are discussed.Based on the results, the effectiveness in surface detection of underwater structures is verified.