The objective of this study was to provide reliable basis for decision making for national food security and layout and structure adjustment of grain production in the northeastern China. The data of mean daily air te...The objective of this study was to provide reliable basis for decision making for national food security and layout and structure adjustment of grain production in the northeastern China. The data of mean daily air temperature of 1961-2009 from 106 meteorological stations in the northeastern China were chosen in this study. Using statistical methods and isoline method, the spatio-temporal changes of various decadal ≥10℃accumulated temperature and the climatic means of ≥10℃ accumulated temperature were studied in this paper. The results showed that 1) The geo- graphical distribution of ≥10℃ accumulated temperature in the northeastern China could be influenced directly by the latitude, longitude and altitude. If latitude moved one degree northward, the average decrease amplitude of the climatic means was 101.9℃ in the study area. 2) The means of decadal ≥10℃ accumulated temperature rose since the 1980s, and their increase amplitudes became larger in the 1990s and the 2010s obviously. Compared with those of the 1980s, ≥10℃ accumulated temperature increased by about 100℃ in the mountainous and plain areas in the 1990s; compared with those of the 1990s, ≥10℃ accumulated temperature increased by about 200℃ in the Hulun Buir High Plain and the Songnen Plain, and 100℃ in the Sanjiang Plain and the Liaohe Plain in the 2010s. 3) The means of the decada ≥10℃accumulated temperature for 106 meteorological stations in the northeastern China increased with the rate of 145.57℃/10yr in 1961-2009.4) The climatic means of ≥10℃ accumulated temperature increased from 1961-1990 to 1971-2000 and 1981-2009. Compared with the climatic mean of 1971-2000, that of 1981-2009 had increased by above 50℃ in most of the study area, even up to 156℃. Compared with the climatic mean of 1961-1990, that of 1981-2009 increased by above 100℃ in most parts of the study area, even up to 200℃. 5) The maximum northward shift, eastward and westward extension amplitudes of3100℃, 3300℃ and 3500℃ isolines were larger among all isolines for the climatic means of the three phases. Compared with the positions of the isolines of 1961-1990, those amplitudes of 31000C isoline of 1981-2009 were 145 km, 109 km and 64 km, respectively; those of 3300℃ isoline were 154 km, 54 km and 64 km, respectively; and the maximum northward shift of 3500℃ isoline was about 100 km.展开更多
The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951-2006 using the observational data.Two apparent modes of variabili...The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951-2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northem East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.展开更多
The South Asian Highs (SAHs) at 100 hPa over China in the three reanalysis datasets NCEP1, NCEP2, and ERA-40 are evaluated by using station observation data. The results demonstrate a substantial discrepancy even betw...The South Asian Highs (SAHs) at 100 hPa over China in the three reanalysis datasets NCEP1, NCEP2, and ERA-40 are evaluated by using station observation data. The results demonstrate a substantial discrepancy even between the reanalyses. First, the data of the three reanalyses generally underestimate the intensity of the SAH in the China domain. Second, there are interdecadal changes in the SAH, with highs in the 1960s and 1980s and lows in the 1970s, 1990s, and 2000s. This interdecadal variation of the SAH can be well depicted with NCEP1 data, but the high in the 1980s is missed by ERA-40. The NCEP2 corresponds well with NCEP 1 and captures the decreasing trend after 1979. Furthermore, the NCEP1 reanalysis overestimates the interdecadal changes of SAH, while ERA-40 underestimates the interdecadal changes. This work suggests that much caution should be exerted when the reanalysis datasets are adopted to study the interdecadal variability of SAH.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40771190)Special Fund for Meteorological Scientific Research in the Public Interest (No. GYHY200706030)
文摘The objective of this study was to provide reliable basis for decision making for national food security and layout and structure adjustment of grain production in the northeastern China. The data of mean daily air temperature of 1961-2009 from 106 meteorological stations in the northeastern China were chosen in this study. Using statistical methods and isoline method, the spatio-temporal changes of various decadal ≥10℃accumulated temperature and the climatic means of ≥10℃ accumulated temperature were studied in this paper. The results showed that 1) The geo- graphical distribution of ≥10℃ accumulated temperature in the northeastern China could be influenced directly by the latitude, longitude and altitude. If latitude moved one degree northward, the average decrease amplitude of the climatic means was 101.9℃ in the study area. 2) The means of decadal ≥10℃ accumulated temperature rose since the 1980s, and their increase amplitudes became larger in the 1990s and the 2010s obviously. Compared with those of the 1980s, ≥10℃ accumulated temperature increased by about 100℃ in the mountainous and plain areas in the 1990s; compared with those of the 1990s, ≥10℃ accumulated temperature increased by about 200℃ in the Hulun Buir High Plain and the Songnen Plain, and 100℃ in the Sanjiang Plain and the Liaohe Plain in the 2010s. 3) The means of the decada ≥10℃accumulated temperature for 106 meteorological stations in the northeastern China increased with the rate of 145.57℃/10yr in 1961-2009.4) The climatic means of ≥10℃ accumulated temperature increased from 1961-1990 to 1971-2000 and 1981-2009. Compared with the climatic mean of 1971-2000, that of 1981-2009 had increased by above 50℃ in most of the study area, even up to 156℃. Compared with the climatic mean of 1961-1990, that of 1981-2009 increased by above 100℃ in most parts of the study area, even up to 200℃. 5) The maximum northward shift, eastward and westward extension amplitudes of3100℃, 3300℃ and 3500℃ isolines were larger among all isolines for the climatic means of the three phases. Compared with the positions of the isolines of 1961-1990, those amplitudes of 31000C isoline of 1981-2009 were 145 km, 109 km and 64 km, respectively; those of 3300℃ isoline were 154 km, 54 km and 64 km, respectively; and the maximum northward shift of 3500℃ isoline was about 100 km.
基金supported by the National Basic Research Program of China(Grant No.2010CB428606)the Chinese Natural Science Foundation Key Project(Grant No.41130962)the Nansen Scientific Society
文摘The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951-2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northem East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.
基金supported by the National Natural Science Foundation of China (Grant No. 40775053)the Ministry of Finance/Ministry of Science and Technology special funds for scientific research on public causes (Grant No GYHY200906018)
文摘The South Asian Highs (SAHs) at 100 hPa over China in the three reanalysis datasets NCEP1, NCEP2, and ERA-40 are evaluated by using station observation data. The results demonstrate a substantial discrepancy even between the reanalyses. First, the data of the three reanalyses generally underestimate the intensity of the SAH in the China domain. Second, there are interdecadal changes in the SAH, with highs in the 1960s and 1980s and lows in the 1970s, 1990s, and 2000s. This interdecadal variation of the SAH can be well depicted with NCEP1 data, but the high in the 1980s is missed by ERA-40. The NCEP2 corresponds well with NCEP 1 and captures the decreasing trend after 1979. Furthermore, the NCEP1 reanalysis overestimates the interdecadal changes of SAH, while ERA-40 underestimates the interdecadal changes. This work suggests that much caution should be exerted when the reanalysis datasets are adopted to study the interdecadal variability of SAH.