Inspired by eagle’s visual system,an eagle-vision-based object detection method for unmanned aerial vehicle(UAV)formation in hazy weather is proposed in this paper.To restore the hazy image,the values of atmospheric ...Inspired by eagle’s visual system,an eagle-vision-based object detection method for unmanned aerial vehicle(UAV)formation in hazy weather is proposed in this paper.To restore the hazy image,the values of atmospheric light and transmission are estimated on the basis of the signal processing mechanism of ON and OFF channels in eagle’s retina.Local features of the dehazed image are calculated according to the color antagonism mechanism and contrast sensitivity function of eagle’s visual system.A center-surround operation is performed to simulate the response of reception field.The final saliency map is generated by the Random Forest algorithm.Experimental results verify that the proposed method is capable to detect UAVs in hazy image and has superior performance over traditional methods.展开更多
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid...In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.展开更多
基金the Science and Technology Innovation 2030-Key Projects(Nos.2018AAA0102303,2018AAA0102403)the Aeronautical Science Foundation of China(No.20175851033)the National Natural Science Foundation of China(Nos.U1913602,U19B2033,91648205,61803011).
文摘Inspired by eagle’s visual system,an eagle-vision-based object detection method for unmanned aerial vehicle(UAV)formation in hazy weather is proposed in this paper.To restore the hazy image,the values of atmospheric light and transmission are estimated on the basis of the signal processing mechanism of ON and OFF channels in eagle’s retina.Local features of the dehazed image are calculated according to the color antagonism mechanism and contrast sensitivity function of eagle’s visual system.A center-surround operation is performed to simulate the response of reception field.The final saliency map is generated by the Random Forest algorithm.Experimental results verify that the proposed method is capable to detect UAVs in hazy image and has superior performance over traditional methods.
基金The National Natural Science Foundation of China(No.61603091)。
文摘In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy.