期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于帧间动态优化贝叶斯压缩感知的监控视频处理研究
1
作者 王臣昊 贾海天 肖小潮 《电脑知识与技术》 2017年第2期228-232,共5页
将基于优化高斯随机观测矩阵的贝叶斯压缩感知算法引入监控视频处理中,并提出帧间动态调整观测的算法,以满足高清视频监控管理中不同时期、不同画面清晰度要求下的传输和存储需求。其动态性体现在,区分基准帧和非基准帧应用不同思路处理... 将基于优化高斯随机观测矩阵的贝叶斯压缩感知算法引入监控视频处理中,并提出帧间动态调整观测的算法,以满足高清视频监控管理中不同时期、不同画面清晰度要求下的传输和存储需求。其动态性体现在,区分基准帧和非基准帧应用不同思路处理,同时,非基准帧的观测序列维数M动态决定。仿真表明,针对1280×720的帧图像,OBCS算法比常用的OMP算法在重构PSNR和运行时长上优势明显;此外,动态调整算法下,非基准帧图像压缩率具有更大的灵活性。 展开更多
关键词 视频监控处理 优化贝叶斯压缩感知 帧间动态调整 高频子带系数 帧间残差
下载PDF
面向Hadoop集群并行处理的复杂交通环境监控视频中运动目标检测方法
2
作者 李振 冯乔生 《软件》 2017年第11期147-155,共9页
复杂交通环境视频中运动目标的自动检测是智能视频犯罪侦查系统的关键技术之一。本文提出了一种在Hadoop集群上对复杂交通环境视频中的运动目标进行检测的方法——OHMOFD方法,该方法是对帧差法进行改进,有效地克服了传统帧差法检测运动... 复杂交通环境视频中运动目标的自动检测是智能视频犯罪侦查系统的关键技术之一。本文提出了一种在Hadoop集群上对复杂交通环境视频中的运动目标进行检测的方法——OHMOFD方法,该方法是对帧差法进行改进,有效地克服了传统帧差法检测运动物体时容易出现孔洞的缺点并适合Hadoop集群并行处理。OHMOFD方法在Hadoop集群上实现了一层次并行运动目标检测。实验表明,车辆行人运动目标检测效果较好,检测效率也比运行在PC单机上的串行检测算法效率有明显提高。 展开更多
关键词 监控视频处理 运动目标检测 HADOOP集群 改进的帧差算法OHMOFD
下载PDF
架空输电线路可视化监拍图像联合去雨雾算法研究
3
作者 扎西曲达 张恒志 +1 位作者 李畅 韩冬 《自动化技术与应用》 2023年第5期64-67,共4页
远程视频监控巡视架空线路可以减少人工巡线工作量,提升巡视效率,当前架空输电线路通道环境恶劣,气候多变,雨雾天气采集的场景图像质量,对巡线辨别产生不利影响,为此提出了一种架空输电线路可视化监拍图像联合去雨雾算法,该算法通过建... 远程视频监控巡视架空线路可以减少人工巡线工作量,提升巡视效率,当前架空输电线路通道环境恶劣,气候多变,雨雾天气采集的场景图像质量,对巡线辨别产生不利影响,为此提出了一种架空输电线路可视化监拍图像联合去雨雾算法,该算法通过建立镜头雨滴模型、图像雨痕模型和雾化模型,利用深度神经网络训练去雨滴、去雨痕和去雾化模型,联合三种模型实现图像去雨雾,试验检测证实,该方法在输电通道环境下具有较好的去雨雾效果。 展开更多
关键词 视频监控图像处理 雨雾检测算法 卷积神经网络
下载PDF
A new approach for real time object detection and tracking on high resolution and multi-camera surveillance videos using GPU 被引量:4
4
作者 Mohammad Farukh Hashmi Ritu Pal +1 位作者 Rajat Saxena Avinash G.Keskar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期130-144,共15页
High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computa... High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object. 展开更多
关键词 central processing unit (CPU) graphics processing unit (GPU) MORPHOLOGY connected component labelling (CCL)
下载PDF
Motion cue based pedestrian detection with two-frame-filtering
5
作者 吕敬钦 Zhang Miaohui Yang Jie 《High Technology Letters》 EI CAS 2015年第3期328-332,共5页
This study proposes a motion cue based pedestrian detection method with two-trame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff pr... This study proposes a motion cue based pedestrian detection method with two-trame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff processing filters the gradient magnitude image by the variation map. Summa- tions of the Tff gradient magnitudes in cells are applied to train a pre-deteetor to exclude most of the background regions. Histogram of Tff oriented gradient (HTffOG) feature is proposed for pedestrian detection. Experimental results show that this method is effective and suitable for real-time surveil- lance applications. 展开更多
关键词 pedestrian detection two-frame-filtering (TFF) Tff magnitude vector (TffMV) Histogram of Tff oriented gradient HTffOG) SVM video surveillance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部