期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
复杂环境下基于角点回归的全卷积神经网络的车牌定位 被引量:11
1
作者 罗斌 郜伟 +2 位作者 汤进 王文中 李成龙 《数据采集与处理》 CSCD 北大核心 2016年第1期65-72,共8页
车牌定位是车牌识别系统中核心部分,具有较高的研究和应用价值。尽管近些年来该研究取得了很大的进展,但仍无法很好地解决低亮度、低分辨率和车辆倾斜等环境下的定位问题。本文提出了一种新的全卷积神经网络,通过回归车牌角点的方式准... 车牌定位是车牌识别系统中核心部分,具有较高的研究和应用价值。尽管近些年来该研究取得了很大的进展,但仍无法很好地解决低亮度、低分辨率和车辆倾斜等环境下的定位问题。本文提出了一种新的全卷积神经网络,通过回归车牌角点的方式准确地进行车牌定位。为了保证训练的有效性,对45 000幅含有车牌的图像进行人工标注。同时,对标注的图像随机进行平移、缩放、旋转和加噪,提高训练样本的数量和多样性。在本文构建的卡口图像数据集和复杂环境数据集上与两种方法进行了比较,验证了本文方法的有效性。 展开更多
关键词 卷积神经网络 车牌定位 深度学习 角点回归 复杂环境
下载PDF
基于典型几何形状精确回归的机场跑道检测方法 被引量:7
2
作者 梁杰 任君 +2 位作者 李磊 齐航 周红丽 《兵工学报》 EI CAS CSCD 北大核心 2020年第10期2045-2054,共10页
在遥感探测领域,实现复杂环境条件下机场跑道类地物目标和轮廓的精确检测具有重要意义。以YOLOv3为代表的主流深度学习算法在目标检测领域取得了显著的成绩,但该方法只能以矩形框给出目标的粗略位置,检测结果具有一定的背景区域且无法... 在遥感探测领域,实现复杂环境条件下机场跑道类地物目标和轮廓的精确检测具有重要意义。以YOLOv3为代表的主流深度学习算法在目标检测领域取得了显著的成绩,但该方法只能以矩形框给出目标的粗略位置,检测结果具有一定的背景区域且无法准确得到角点位置。针对以上问题,提出一种基于典型几何形状精确回归的机场跑道检测方法。综合利用典型四边形角点回归策略、四边形锚框机制、四边形的非极大值抑制模块以及目标几何拓扑关系,通过网络的轻量化设计和模型压缩,实现对目标在仿射畸变下成像特征的学习,能够快速预测目标的角点坐标,并以目标的四边形轮廓给出其位置。仿真实验结果表明,该算法具备机场跑道目标类型区分和轮廓提取的功能,有效地解决了实际应用中的目标精确定位难题;在不损失精度基础上网络经压缩后较压缩前的检测速度提高了1倍,大幅提升了自动目标检测的准确性和高效性。 展开更多
关键词 机场跑道目标检测 深度学习 典型几何形状 精确角点回归 网络轻量化
下载PDF
高分影像密集建筑物Correg-YOLOv3检测方法 被引量:5
3
作者 陈占龙 李双江 +3 位作者 徐永洋 徐道柱 马超 赵军利 《测绘学报》 EI CSCD 北大核心 2022年第12期2531-2540,共10页
精准地检测建筑物目标对于城市规划、智慧城市建设和军事民事活动中均有重要意义。针对高分辨率遥感影像中密集型建筑物检测框重叠比高的问题,本文提出了一种Correg-YOLOv3(corner regression-based YOLOv3)检测方法,该方法以YOLOv3网... 精准地检测建筑物目标对于城市规划、智慧城市建设和军事民事活动中均有重要意义。针对高分辨率遥感影像中密集型建筑物检测框重叠比高的问题,本文提出了一种Correg-YOLOv3(corner regression-based YOLOv3)检测方法,该方法以YOLOv3网络架构为基础,通过嵌入角点回归机制,增设一个关于顶点相对于边界框中心点的偏移量的额外损失项,扩展其输出维度,使其可同时输出矩形检测框及建筑物角点,实现密集分布的建筑物精准定位。最后,通过试验对本文方法进行定性和定量的评估。试验研究结果表明:本文方法检测精度、召回率、F1和平均精度分别达到了96.45%、95.75%、96.10%和98.05%,较原算法YOLOv3分别提高了2.73%、5.4%、4.1%和4.73%。因此,本文方法有效解决了高分影像中密集型建筑物的检测问题。 展开更多
关键词 高分遥感影像 Correg-YOLOv3 角点回归 密集建筑物 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部