文摘针对采用最大体积单体MVS(Maximization Volume Simplex)端元提取算法进行端元初选时存在相似端元光谱问题,提出一种光谱信息散度SID(Spectral Information Divergence)和光谱梯度角SGA(Spectral Gradient Angle)相结合以区分两个相似端元光谱的方法。该方法对经过端元初选之后的端元子集进行端元的二次选择,采用以SID_SG作为最相似端元选择的判据,除去相似端元,降低相似端元对解混精度的影响,利用全约束最小二乘法进行丰度估计。实验结果表明,提出的优化方法与传统方法相比,提高了端元的选择精度,重构影像与原始影像之间的均方根误差RMSE(Root Mean Square Error)也有所降低,分布更加均匀。该方法对高光谱遥感影像进行深度解译具有十分重要的意义。