针对混合微电网集中控制对中央控制器依赖严重、通信需求量大、扰动调节能力差的问题,提出一种微电网中央控制器(microgrid central control,MGCC)参与的分层事件触发控制策略,有效降低分布式集群的冗余通信并减少中央控制器计算负担,...针对混合微电网集中控制对中央控制器依赖严重、通信需求量大、扰动调节能力差的问题,提出一种微电网中央控制器(microgrid central control,MGCC)参与的分层事件触发控制策略,有效降低分布式集群的冗余通信并减少中央控制器计算负担,改进策略可靠性。该策略将控制系统分为2层,其中,设备层为本地控制层,采用分布式协同控制,所设计的本地控制器可就地控制更新输出状态,实现混合微电网的分散自治运行;另外,在控制层建立微电网控制层,引入事件触发策略,协调MGCC获取混合微电网的全局信息,从而向本地控制器发出预定义的调控指令,实现“源网荷储”灵活调度,尤其是应对突发事件而引发的电网振荡。最后,采用Matlab搭建混合微电网模型并进行仿真,利用Stateflow模块实现了事件触发算法,验证控制策略在满足并网/孤岛模式可靠性、稳定性的前提下,系统通信量可降低56.4%。展开更多
文摘针对混合微电网集中控制对中央控制器依赖严重、通信需求量大、扰动调节能力差的问题,提出一种微电网中央控制器(microgrid central control,MGCC)参与的分层事件触发控制策略,有效降低分布式集群的冗余通信并减少中央控制器计算负担,改进策略可靠性。该策略将控制系统分为2层,其中,设备层为本地控制层,采用分布式协同控制,所设计的本地控制器可就地控制更新输出状态,实现混合微电网的分散自治运行;另外,在控制层建立微电网控制层,引入事件触发策略,协调MGCC获取混合微电网的全局信息,从而向本地控制器发出预定义的调控指令,实现“源网荷储”灵活调度,尤其是应对突发事件而引发的电网振荡。最后,采用Matlab搭建混合微电网模型并进行仿真,利用Stateflow模块实现了事件触发算法,验证控制策略在满足并网/孤岛模式可靠性、稳定性的前提下,系统通信量可降低56.4%。