针对认知异构蜂窝网络的上行资源分配问题,提出了基于带宽和功率约束的资源分配算法,并使用改进的群智能算法求解.根据认知无线电技术特性推导出认知家庭用户的带宽和功率分配取值范围,在满足用户服务质量(Quality of Services,QoS)的...针对认知异构蜂窝网络的上行资源分配问题,提出了基于带宽和功率约束的资源分配算法,并使用改进的群智能算法求解.根据认知无线电技术特性推导出认知家庭用户的带宽和功率分配取值范围,在满足用户服务质量(Quality of Services,QoS)的前提下将更多的资源分配给其他用户,以提升网络中用户的传输需求和缓解网络上行接入负载的压力.针对樽海鞘群算法存在收敛精度低、收敛慢等缺陷,将疯狂算子和动态精英学习因子分别引入领导者和跟随者中,以提升算法寻优效率和寻优精度.将改进的樽海鞘群算法求解基于带宽和功率约束的资源分配算法.仿真实验表明,引入带宽和功率约束的资源分配算法能有效提升网络性能,且在保证用户QoS条件下,能有效提升系统效益和用户接入公平性.展开更多
在认知蜂窝异构网络中,针对大规模部署认知家庭基站带来的能量消耗问题,研究了两层异构网络上行链路的资源分配算法.提出了一种基于双循环迭代的资源联合分配算法,在实时用户服务质量(quality of service,QoS)需求约束和跨层干扰约束...在认知蜂窝异构网络中,针对大规模部署认知家庭基站带来的能量消耗问题,研究了两层异构网络上行链路的资源分配算法.提出了一种基于双循环迭代的资源联合分配算法,在实时用户服务质量(quality of service,QoS)需求约束和跨层干扰约束下最大化认知系统能量效率,将分数形式的能效函数等价转换为减数形式,使优化问题近似确定为凸优化形式,并通过迭代方法求解.仿真结果表明:该算法能够快速收敛到最优能效,并保证了实时用户的QoS需求,有效提高了系统能量效率.展开更多
文摘针对认知异构蜂窝网络的上行资源分配问题,提出了基于带宽和功率约束的资源分配算法,并使用改进的群智能算法求解.根据认知无线电技术特性推导出认知家庭用户的带宽和功率分配取值范围,在满足用户服务质量(Quality of Services,QoS)的前提下将更多的资源分配给其他用户,以提升网络中用户的传输需求和缓解网络上行接入负载的压力.针对樽海鞘群算法存在收敛精度低、收敛慢等缺陷,将疯狂算子和动态精英学习因子分别引入领导者和跟随者中,以提升算法寻优效率和寻优精度.将改进的樽海鞘群算法求解基于带宽和功率约束的资源分配算法.仿真实验表明,引入带宽和功率约束的资源分配算法能有效提升网络性能,且在保证用户QoS条件下,能有效提升系统效益和用户接入公平性.
文摘在认知蜂窝异构网络中,针对大规模部署认知家庭基站带来的能量消耗问题,研究了两层异构网络上行链路的资源分配算法.提出了一种基于双循环迭代的资源联合分配算法,在实时用户服务质量(quality of service,QoS)需求约束和跨层干扰约束下最大化认知系统能量效率,将分数形式的能效函数等价转换为减数形式,使优化问题近似确定为凸优化形式,并通过迭代方法求解.仿真结果表明:该算法能够快速收敛到最优能效,并保证了实时用户的QoS需求,有效提高了系统能量效率.