期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合词袋连通图的图像检索特征选择 被引量:2
1
作者 李国祥 王继军 马文斌 《中国图象图形学报》 CSCD 北大核心 2021年第10期2533-2544,共12页
目的随着图像检索所依赖的特征愈发精细化,在提高检索精度的同时,也不可避免地产生众多非相关和冗余的特征。针对在大规模图像检索和分类中高维度特征所带来的时间和空间挑战,从减少特征数量这一简单思路出发,提出了一种有效的连通图特... 目的随着图像检索所依赖的特征愈发精细化,在提高检索精度的同时,也不可避免地产生众多非相关和冗余的特征。针对在大规模图像检索和分类中高维度特征所带来的时间和空间挑战,从减少特征数量这一简单思路出发,提出了一种有效的连通图特征点选择方法,探寻图像检索精度和特征选择间的平衡。方法基于词袋模型(bag of words,BOW)的图像检索机制,结合最近邻单词交叉核、特征距离和特征尺度等属性,构建包含若干个连通分支和平凡图的像素级特征分离图,利用子图特征点的逆文本频率修正边权值,从各连通分量的节点数量和孤立点最近邻单词相关性两个方面开展特征选择,将问题转化为在保证图像匹配精度情况下,最小化特征分离图的阶。结果实验采用Oxford和Paris公开数据集,在特征存储容量、时间复杂度集和检索精度等方面进行评估,并对不同特征抽取和选择方法进行了对比。实验结果表明选择后的特征数量和存储容量有效约简50%以上;100 k词典的KD-Tree查询时间减少近58%;相对于其他编码方法和全连接层特征,Oxford数据集检索精度平均提升近7.5%;Paris数据集中检索精度平均高于其他编码方法4%,但检索效果不如全连接层特征。大量实验表明了大连通域的冗余性和孤立点的可选择性。结论通过构建特征分离图,摒弃大连通域的冗余特征点,保留具有最近邻单词相关性的孤立特征点,最终形成图像的精简特征点集。整体检索效果稳定,其检索精度基本与原始特征点集持平,且部分类别效果优于原始特征和其他方法。同时,选择后特征的重用性好,方便进一步聚合集成。 展开更多
关键词 模型(bow) 特征选择 图像检索 连通分量 聚合特征
原文传递
基于多特征融合的电子布缺陷分类 被引量:2
2
作者 郑敏 景军锋 +1 位作者 张缓缓 苏泽斌 《控制工程》 CSCD 北大核心 2020年第1期98-103,共6页
针对传统的电子布缺陷分类方法效率低,稳定性差的问题,提出了基于多特征融合的电子布缺陷分类算法。首先,使用中值滤波对电子布图像进行预处理,滤除细节噪声,减少背景纹理的影响;其次,对预处理后的图像进行Canny边缘检测,利用Hu不变矩... 针对传统的电子布缺陷分类方法效率低,稳定性差的问题,提出了基于多特征融合的电子布缺陷分类算法。首先,使用中值滤波对电子布图像进行预处理,滤除细节噪声,减少背景纹理的影响;其次,对预处理后的图像进行Canny边缘检测,利用Hu不变矩提取缺陷的几何特征;再利用尺度不变特征变换(SIFT)提取图像的纹理特征,使用K-means聚类后,构建电子布图像的词袋模型(BoW);最后,将几何特征和纹理特征融合,并传入SVM中进行训练,得到相应的电子布缺陷分类模型。实验结果表明,应用多特征融合的方法对电子布缺陷进行分类,其平均准确率可达97.22%,能够满足企业的实际需求。 展开更多
关键词 HU不变矩 SIFT特征 模型(bow) 支持向量机(SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部