This paper is based on two existing theories about automatic indexing of thematic knowledge concept. The prohibit-word table with position information has been designed. The improved Maximum Matching-Minimum Backtrack...This paper is based on two existing theories about automatic indexing of thematic knowledge concept. The prohibit-word table with position information has been designed. The improved Maximum Matching-Minimum Backtracking method has been researched. Moreover it has been studied on improved indexing algorithm and application technology based on rules and thematic concept word table.展开更多
Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), sin...Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), since human reports are better and easier expressed in natural language than with numbers. In this paper, Herrera-Martfnez's 2-Tuple linguistic representation model is extended for reasoning with uncertain and qualitative information in Dezert-Smarandache Theory (DSmT) framework, in order to overcome the limitations of current approaches, i.e., the lack of precision in the final results of linguistic information fusion according to 1-Tuple representation ( q1 )- The linguistic information which expresses the expert's qualitative beliefs is expressed by means of mixed 2 Tuples (equidistant linguistic labels with a numeric biased value). Together with the 2-Tuple representation model, some basic operators are presented to carry out the fusion operation among qualitative information sources. At last, through simple example how 2-Tuple qualitative DSmT-based (q2 DSmT) fusion rules can be used for qualitative reasoning and fusion under uncertainty, which advantage is also showed by comparing with other methods.展开更多
In order to improve the automatic retrieval ability of English vocabulary, for the distribution of semantic attributes in English vocabulary, an automatic classification method of English vocabulary is proposed based ...In order to improve the automatic retrieval ability of English vocabulary, for the distribution of semantic attributes in English vocabulary, an automatic classification method of English vocabulary is proposed based on association rules, English vocabulary data storage model is constructed, a two element linguistic feature function is constructed for describing the directionality of English lexical retrieval scheduling, English vocabulary classification decision making model is constructed based on contextual relations of English vocabulary, the features of the association rules of English vocabulary are extracted, the adaptive learning method is used to realize the automatic classification of English vocabulary. The simulation results show that the method of English vocabulary classification has good performance, the classification error rate is low, the retrieval precision is high, and the computational overhead is small.展开更多
基金the Science Foundation of Shanghai Archive Bureau (0215)
文摘This paper is based on two existing theories about automatic indexing of thematic knowledge concept. The prohibit-word table with position information has been designed. The improved Maximum Matching-Minimum Backtracking method has been researched. Moreover it has been studied on improved indexing algorithm and application technology based on rules and thematic concept word table.
基金Supported by the National Natural Science Foundation of China (60804063)863 Program (2006AA040202)
文摘Most of modern systems for information retrieval, fusion and management have to deal with more and more qualitative information (by linguistic labels) besides information expressed quantitatively (by numbers), since human reports are better and easier expressed in natural language than with numbers. In this paper, Herrera-Martfnez's 2-Tuple linguistic representation model is extended for reasoning with uncertain and qualitative information in Dezert-Smarandache Theory (DSmT) framework, in order to overcome the limitations of current approaches, i.e., the lack of precision in the final results of linguistic information fusion according to 1-Tuple representation ( q1 )- The linguistic information which expresses the expert's qualitative beliefs is expressed by means of mixed 2 Tuples (equidistant linguistic labels with a numeric biased value). Together with the 2-Tuple representation model, some basic operators are presented to carry out the fusion operation among qualitative information sources. At last, through simple example how 2-Tuple qualitative DSmT-based (q2 DSmT) fusion rules can be used for qualitative reasoning and fusion under uncertainty, which advantage is also showed by comparing with other methods.
文摘In order to improve the automatic retrieval ability of English vocabulary, for the distribution of semantic attributes in English vocabulary, an automatic classification method of English vocabulary is proposed based on association rules, English vocabulary data storage model is constructed, a two element linguistic feature function is constructed for describing the directionality of English lexical retrieval scheduling, English vocabulary classification decision making model is constructed based on contextual relations of English vocabulary, the features of the association rules of English vocabulary are extracted, the adaptive learning method is used to realize the automatic classification of English vocabulary. The simulation results show that the method of English vocabulary classification has good performance, the classification error rate is low, the retrieval precision is high, and the computational overhead is small.