期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PageRank的新闻关键词提取算法
被引量:
15
1
作者
顾亦然
许梦馨
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2017年第5期777-783,共7页
现有的基于复杂网络的关键词提取算法在构建加权文本网络时没有考虑文本的自然语言特性,且在提取关键词时较少涉及复杂网络领域经典算法。本文引入词频分享权重,利用词频特性为节点之间的连边加权。在此基础上,基于Page Rank算法,并结...
现有的基于复杂网络的关键词提取算法在构建加权文本网络时没有考虑文本的自然语言特性,且在提取关键词时较少涉及复杂网络领域经典算法。本文引入词频分享权重,利用词频特性为节点之间的连边加权。在此基础上,基于Page Rank算法,并结合人类语言习惯特性定义位置权重系数,提出了一个新的新闻关键词提取算法——LTWPR算法,综合考虑了文本网络的局部特征和全局特征。采用新浪新闻语料进行了大量实验,结果表明该算法能够快速有效的覆盖新闻作者标注的关键词,且提取效果更佳。
展开更多
关键词
复杂网络
关键词提取
自然语言
PAGERANK
词频分享权重
下载PDF
职称材料
题名
基于PageRank的新闻关键词提取算法
被引量:
15
1
作者
顾亦然
许梦馨
机构
南京邮电大学自动化学院
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2017年第5期777-783,共7页
基金
教育部人文社会科学研究规划基金(15YJZH016)
文摘
现有的基于复杂网络的关键词提取算法在构建加权文本网络时没有考虑文本的自然语言特性,且在提取关键词时较少涉及复杂网络领域经典算法。本文引入词频分享权重,利用词频特性为节点之间的连边加权。在此基础上,基于Page Rank算法,并结合人类语言习惯特性定义位置权重系数,提出了一个新的新闻关键词提取算法——LTWPR算法,综合考虑了文本网络的局部特征和全局特征。采用新浪新闻语料进行了大量实验,结果表明该算法能够快速有效的覆盖新闻作者标注的关键词,且提取效果更佳。
关键词
复杂网络
关键词提取
自然语言
PAGERANK
词频分享权重
Keywords
complex networks
keyword extraction
natural language
PageRank
term-frequency- shared weight
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PageRank的新闻关键词提取算法
顾亦然
许梦馨
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2017
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部